Ви є тут

Використання ДНК-маркерів у дослідженнях малини (Rubus L.): огляд

Малина (Rubus L.) належить до найпоширеніших ягідних культур у садівництві, є цінним харчовим продуктом для людини й сировиною для переробних підприємств харчової промисловості. Сортимент малини в Україні налічує понад 30 сортів. Сучасні селекційно-генетичні програми спрямовано на розширення генетичного різноманіття і створення нових сортів малини. Як у фундаментальних, так і прикладних дослідженнях представників роду Rubus дедалі ширше використовують молекулярно-генетичні методи. В статті представлено огляд основних типів застосовуваних молекулярних маркерів для вивчення генетичного поліморфізму видів роду Rubus. Зі всього різноманіття наявних ДНК-маркерів найбільш результативними стосовно вирішення проблем, пов’язаних з генотипами, оцінюванням поліморфізму популяцій, генетичним картуванням, філогенетичними дослідженнями малини, виявились такі молекулярні методи аналізу як RAPD, RFLP, AFLP, ISSR, SSR та SNPs. Їх високу ефективність пов’язують з підвищеною роздільною здатністю, відтворюваністю, високою інформативністю, можливістю автоматизації аналізу, швидкістю, простотою та доступністю. Зазначені маркери є зручним інструментом для геномної селекції й дослідження генетичного різноманіття не лише представників роду Rubus, а також усіх живих організмів. Стосовно ретротранспозонних маркерів, які становлять основну частину геному еукаріот, наукові праці про їх використання для дослідження представників роду Rubus, на відміну від інших культур, нечисленні. Значний прогрес у селекції малини пов'язаний з розвитком сучасних технологій секвенування. Повногеномне секвенування (WGS) дає змогу одночасно генерувати велику кількість SNP-маркерів, які використовують для створення генетичних карт, ідентифікації генів стійкості до патогенів, картування господарсько корисних ознак та ін.

Ключові слова: Rubus, малина, ДНК-маркери, поліморфізм, селекція.

 

Посилання: 
1. Державний реєстр сортів рослин, придатних для поширення в Україні. Міністерство аграрної політики та продовольства України. URL: https:// minagro.gov.ua/ua/file-storage/reyestr-sortiv-roslin.
2. Марковський В.С., Бахмат М.І. Ягідні культури в Україні. Кам’янець-Подільський: ПП «Медобори-2006», 2008. 200 с.
3. Молекулярні маркери для ідентифікації посухостійких генотипів пшениці в умовах змін клімату / С.В. Пикало та ін. Екологічні науки. 2020. 4(31). C. 193‒202. DOI: 10.32846/2306-9716/2020. eco.4-31.31
4. Поліщук І.М. Фітохімічне вивчення малини звичайної та створення на її основі нових лікарських засобів: дис. ... доктора філософії. 226 – Фармація, 22 – Охорона здоров’я. Харків, 2020. 256 с.
5. AFLP: a new technique for DNA fingerprinting / P. Vos et al. Nucleic Acids Res. 1995. Vol. 23 (21). P. 4407–4414.
6. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 1980. Vol. 32 (3). Р. 314–331.
7. QTL involved in the modification of cyanidin compounds in black and red raspberry fruit / J.M. Bushakra et al. Theoretical and Applied Genetics. 2013. Vol. 126 (3). P. 847–865. DOI: 10.1007/s00122-012- 2022-4.
8. Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach / J.M. Bushakra et al. Theor. Appl. Genet. 2012. Vol. 125(2). P. 311‒327. DOI: 10.1007/s00122-012- 1835-5.
9. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.) BMC Plant Biol / J.M. Bushakra et al. 2015. Vol. 15. P. 258‒269. DOI: 10.1007/ s00122-015-2541-x.
10. Bussemeyer D.T., Pelikan S., Kennedy R.S., Rogstad S.H. Genetic diversity of Philippine Rubus moluccanus L. (Rosaceae) populations examined 73 agrobiologiya.btsau.edu.ua Агробіологія, 2023, № 2 with VNTR DNA probes. Trop. Biol. 1997. Vol. 14. P. 867‒884. DOI: 10.1017/S0266467400011044.
11. Castillo N.R.F., Bassil N.V., Wada S., Reed B.M. Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell. Dev. Biol. Plant. 2010. Vol. 46(3). P. 246‒256. DOI: 10.1007/s11627- 009-9265-z.
12. Microsatellite markers for raspberry and blackberry / N.R.F. Castillo et al. Am. Soc. Hortic. Sci. 2010. Vol. 135. P. 271‒278.
13. Cekic C., Calis O., Ozturk E.S. Genetic diversity of wild raspberry genotypes (Rubus idaeus L.) in North Anatolia based on ISSR markers. Appl. Ecol. Environ. Res. 2018. Vol. 16(5). P. 6835‒6843. DOI: 10.15666/aeer/1605_68356843.
14. Dossett M., Bassil N., Finn C. SSR fingerprinting of black raspberry cultivars shows discrepancies in identification. Acta Hortic. 2012. Vol. 946. P. 49‒53. DOI: 10.17660/ActaHortic.2012.946.4.
15. Eckert A.J. High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genetics & Genomes. 2009. Vol. 5(1). P. 225‒234.
16. AFLP-based genetic relationships in wild and cultivated raspberry genotypes (Rubus idaeus L.) / S. Ercisli et al. Biotechnol. Biotechnol. Equip. 2008. Vol. 22(4). P. 907‒910.
17. FAO 2018. Statistics Raspberry Europe.
18. Garcia A.A.F., Banchimol L.L., Barbosa A.M.M. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology. 2004. Vol. 27 (4). 4. P. 579–588.
19. Garrido P., Morillo E., Vásquez-Castillo W. Genetic diversity of the Andean blackberry (Rubus glaucus Benth.) in Ecuador assessed by AFLP markers. Plant Genetic Resources. 2020. Vol. 18(4). P. 243‒250. DOI: 10.1017/S1479262120000283
20. Glazko V.I., Dubin A.V., Kalendar R.I., Glazko G.V. Genetic relationships between soybean breeds assessed using ISSR markers. Cytology and Genetics. 1999. Vol. 33 (5). P. 47–51.
21. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp idaeus) based on AFLPs, genomic-SSR and EST-SSR markers / J. Graham et al. Theoretical and Applied Genetics. 2004. Vol. 109. P. 740–749. DOI: 10.1007/s00122-004-1687-8
22. Graham J., Smith K., Woodhead M., Russell J.R. Development and use of simple sequence repeat SSR markers in Rubus species. Mol. Ecol. Notes. 2002. Vol. 2. P. 250‒252.
23. Graham J., Squire B., Marshall B., Harrison R.E. Spatially dependent genetic diversity within and between colonies of wild raspberry R. idaeus detected using RAPD markers. Mol. Ecol. 1997. Vol. 6. P. 1001‒1008.
24. New insight into wild red raspberry populations using simple sequence repeat markers / J. Graham et al. Am. Soc. Hort. Sci. 2009. Vol. 134(1). P. 109‒119.
25. Current trends in microsatellite genotyping / E. Guichoux et al. Molecular Ecology Resources. 2011. Vol. 11. P. 591–611.
26. Enhancement of Glen Moy × Latham raspberry linkage map using GbS to further understand control of development processes leading to fruit ripening / C.A. Hackett et al. BMC Genetics. 2018. Vol. 19. 59 p. DOI 10.1186/s12863-018-0666-z.
27. Hoepfner A.S., Nybom H., Carlsson U., Franzen R. DNA fingerprinting useful for monitoring cell line identity in micropropagated raspberries. Acta Agric. Scand. Sect. B. Soil Plant Sci. 1993. Vol. 43. P. 53‒57.
28. John J.St., Ransler F., Quinn T., OylerMcCance S. Characterization of microsatellite loci isolated in trumpeter swan (Cygnus buccinator). Mol. Ecol. Notes. 2006. Vol. 6. P. 1083–1085.
29. Kalia R.K. Rai M.K, Kalia S., Singh R., Dhawan A.K. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011. Vol. 177. P. 309–334.
30. Keane B., Smith M.K., Rogstad S.H. Genetic variation in red raspberries (Rubus idaeus L., Rosaceae) from sites differing in organic pollutants compared with synthetic repeat DNA probes. Environ. Toxicol. Chem. 1998. Vol. 17. P. 2027‒2034. DOI: 10.1002/ etc.5620171019.
31. Kollmann J., Steinger T., Roy B.A. Evidence of sexuality in european Rubus (Rosaceae) species based on AFLP and allozyme analysis. Am. J. Bot. 2000. Vol. 87(11). P. 1592‒1598.
32. Novel microsatellite markers acquired from Rubus coreanus Miq. and cross-amplification in other Rubus species / G.A. Lee et al. Molecules. 2015. Vol. 20. P. 6432‒6442. DOI: 10.3390/molecules20046432.
33. Liang Y., Lenz R.R., Dai W. Development of retrotransposon-based molecular markers and their application in genetic mapping in chokecherry (Prunus virginiana L.). Mol. Breed. 2016. Vol. 36. 109 p. DOI: 10.1007/s11032-016-0535-2.
34. López A., Barrera C., Marulanda M. Evaluation of SSR and SNP markers in R. glaucus Benth progenitors’ selection. Rev. Bras. Frutic. 2019. Vol. 41(1). P. 1‒14. DOI: 10.1590/0100-29452019081.
35. Marulanda M., Lopez A., Aguilar S. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breed. Appl. Biotechnol. 2007. Vol. 7. P. 242‒252.
36. McGregor C.E., Treuren R., Hoekstra R., Hintum T.L. Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor. Appl. Gen. 2002. Vol. 104. P. 146–156.
37. Miyashita T., Kunitake H., Yotsukura N., Hoshino Y. Assessment of genetic relationships among cultivated and wild Rubus accessions using AFLPmarkers. Sci. Hortic. 2015. Vol. 193. P. 165‒173.
38. Moore P.P. Chloroplast DNA diversity in raspberry. J. Am. Soc. Hortic. Sci. 1993. Vol. 118. P. 371‒376.
39. Nybom H., Rogstad S.H., Schaal B.A. Genetic variation detected by use of the M13 ‘DNA fingerprint’ probe in Malus, Prunus and Rubus (Rosaceae). Theor. Appl. Genet. 1990. Vol. 79. P. 153‒156.
40. Genetic diversity of blackberry (Rubus subgenus Rubus Watson) in selected counties in Kenya using simple sequence repeats (SSRs) markers / J.A. Ochieng et al. Afr. J. Biotechnol. 2018. Vol. 17(39). P. 1247‒1264. DOI: 10.5897/AJB2018.16613.
41. Parent J.G., Pagé D. Identification of raspberry cultivars by sequence characterized amplified region DNA analysis. HortScience. 1998. Vol. 33. P. 140‒142. 42. The genetic structure of red raspberry (Rubus idaeus L.) populations in Lithuania / J. Patamsytė et al. Cent. Eur. J. Biol. 2010. Vol. 5(4). Р. 496–506. DOI: 10.2478/s11535-010-0034-0.
43. Genotyping-by-sequencing based single nucleotide polymorphisms enabled Kompetitive Allele Specific PCR marker development in mutant Rubus genotypes / J. Ryu et al. Electron. J. Biotechnol. 2018. Vol. 35. P. 57‒62. DOI: 10.1016/j.ejbt.2018.08.001.
44. Semagn K., Bjornstad Å., Ndjiondjop M.N. An overview of molecular marker methods for plants. African Journal of Biotechnology. 2006. Vol. 5 (25). Р. 2540–2568. 45. An effective method for axillary bud culture and RAPD analysis of cloned plants in tetraploid black locust / Q.Y. Shu et al. Plant Cell Report. 2003. Vol. 22 (3). P. 175–180.
46. Simlat M., Ptak A., Kula A., Orzel A. Assessment of genetic variability among raspberry accessions using molecular markers. Acta Sci. Pol. Hortorum Cultus. 2018. Vol. 17(5). P. 61‒72. DOI: 10.24326/asphc.2018.5.6. 47. USDA. 2018. Branded Food Products Database. Available at: https://ndb.nal.usda.gov/ndb/search/ list.
48. Sequence and analysis of the black raspberry (Rubus occidentalis) genome / R. VanBuren et al. The Genomes of Rosaceous Berries and Their Wild Relatives. Springer, 2018. P. 185‒197.
49. Varshney R.K., Graner A., Sorrells M.E. Genic microsatellite markers in plants: features and applications. TRENDS in Biotechnology. 2005. Vol. 23. P. 48‒55.
50. Saturated linkage map construction in Rubus idaeususing genotyping by sequencing and genome-independent imputation / J.A. Ward et al. BMC genomics. 2013. Vol. 14 (2). DOI: 10.1186/1471-2164-14-2
51. Weber C.A., Pattison J., Samuelian S. Marker assisted selection for resistance to root rot in red raspberry caused by Phytophthora fragariae var. rubi. Acta Hortic. 2008. Vol. 777. P. 311‒316. DOI: 10.17660/ ActaHortic.2008.777.46.
52. Draft genome assembly and annotation of red raspberry Rubus idaeus / H. Wight et al. BioRxiv. 2019. DOI: 10.1101/546135.
53. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers / J.G.K. Williams et al. Nucleic Acids Research. 1990. Vol. 18 (22). Р. 6531–6535.
54. Zane L., Bargelloni L., Patarnello T. Strategies for microsatellite isolation: a review. Mol. Ecol. 2002. Vol. 11. P. 1–16.
55. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by seguence repeat (SSR) – anchored polymerase chain reaction amplification. Genomics. 1994. Vol. 20. P. 176–183.

 

Завантажити статью: 
ДолученняРозмір
PDF icon dyman_agro_2_2023.pdf534.51 КБ