Ви є тут

Збереженість якісних показників ягід суниці садової за обробки хітозаном

Зменшення харчових відходів, а також неінвазивні методи продовження терміну зберігання швидкопсувних фруктів є важливими глобальними викликами для науковців та підприємців. З виходом українських виробників на закордонні ринки актуальність теми якісного зберігання плодоовочевої продукції набуває особливого значення. Чим більша врожайність та кількість ягідних культур, що вирощують наші аграрії, тим більше викликів щодо обробки, зберігання та логістики отриманих врожаїв. На практиці забезпечити оптимальні умови для збереження якості, свіжості, смаку, аромату і товарного вигляду ускладнюється в силу делікатності продукції. Суниця садова (Fragaria ananassa) – високопоживна та економічно важлива ягідна культура, що має короткий термін зберігання. Це сезонна ягода, яка представлена на ринку лише декілька місяців. У період масового збору урожаю суниця є лідером за кількістю втрат серед всіх ягідних культур, які зумовлені її фізіологічними особливостями. У роботі запропоновано використання хітозану для подовження терміну зберігання ягід суниці. Досліджено вплив попередньої обробки розчинами хітозану різних концентрацій. Для оцінки впливу попередньої обробки на якісні показники ягід суниці дослідження проводили на кожну третю добу зберігання, визначаючи втрату маси; м.ч. СРР; м.ч. органічних кислот; м.ч. цукрів. Ягоди суниці обробляли розчинами хітозану трьох концентрацій (0,1; 0,2; 0,3 %) за повного занурення на 1 хв. Оброблені ягоди залишали до повного висихання. Сухі оброблені ягоди та контроль зважували й поміщали у перфоровані пластикові (РЕТ) контейнери місткістю 500 г та зберігали у холодильній камері за температури 0+2 о С. За контроль вважали ягоди без обробки. Ягоди суниці сорту Дукат в середньому накопичили у своєму складі 10,4 % сухих розчинних речовин та 1,1 % органічних кислот. Виявлено, що післязбиральна обробка ягід суниці розчином хітозану забезпечувала найвищу їх збереженість, порівняно з контролем, що доводить ефективність її застосування. Попередня обробка ягід суниці розчином хітозану сповільнила втрати сухих розчинних речовин на 0,2–0,9 %, а органічних кислот на 0,04–0,12 % від контролю.

Ключові слова: суниця садова, хітозан, зберігання, попередня обробка, якісні показники, ягоди.

 

Посилання: 
1. González-Domínguez, R., Sayago, A., Akhatou, I., Fernández-Recamales, Á. (2020). Multi-chemical profiling of strawberry as a traceability tool to investigate the effect of cultivar and cultivation conditions. Foods. Vol. 9 (1), 96 p. DOI: 10.3390/foods9010096
2. Garzoli, S., Cairone, F., Carradori, S. (2020). Effects of Processing on Polyphenolic and Volatile Composition and Fruit Quality of Clery Strawberries. Antioxidants. Vol. 9, no. 7, 632 p. DOI: 10.3390/antiox9070632
3. Jurgiel-Małecka, G., Gibczyńska, M., Siwek, H., Buchwał, A. (2017). Comparison of fruits chemical composition of selected cultivars wild strawberry (Fragaria vesca L.) Eur. J. Hortic. Sci. Vol. 82, no. 4, pp. 204–210. DOI: 10.17660/eJHS.2017/82.4.6
4. Petkova, Z., Nedyalkova, K. (2020). Multiannual growing of remontant strawberries (opportunities for biological production). Bulgarian Journal of Agricultural Science. Vol. 26, no. 3, pp. 513–519.
5. Nestby, R., Sønsteby, A. (2017). Effect of plant type and delayed planting on growth and yield parameters of two short day strawberry (Fragaria x ananassa Duch.) cultivars in open field. Journal of Berry Research. Vol. 7(3), pp. 179–194.
6. Hancock, J.F., Finn, C.E., Luby, J.J. (2010). Reconstruction of the strawberry, Fragaria× ananassa, using genotypes of F. virginiana and F. chiloensis. Hort Science. Vol. 45, no. 7, pp. 1006–1013. DOI: 10.21273/ HORTSCI.45.7.1006
7. Palmieri, L., Masuero, D., Martinatti, P. (2016). Genotype by environment effect on bioactive compounds in strawberry (Fragaria x ananassa Duch.). Journal of the Science of Food and Agriculture. Vol. 97, no. 12, pp. 4180–4189. DOI: 10.1002/jsfa.8290
8. de Jesús Ornelas-Paz, J., Yahia, E.M., Ramírez-Bustamante, N. (2013). Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chemistry. Vol. 138, no. 1, pp. 372–381. DOI: 10.1016/j.foodchem.2012.11.006
9. Skupień, K., Oszmiański, J. (2004). Comparison of six cultivars of strawberries (Fragaria x ananassa Duch.) grown in northwest Poland. European Food Research and Technology. no. 219 (1), pp. 66–70. DOI: 10.1007/s00217-004-0918-1
10. Wiącek, A.E., Gozdecka, A., Jurak, M. (2018). Physicochemical characteristics of chitosan–TiO2 biomaterial. 1. Stability and swelling properties. Industrial & Engineering Chemistry Research. no. 57(6), pp. 1859–1870. DOI: 10.1021/acs.iecr.7b04257
11. Lizardi-Mendoza, J., Monal, W.M.A., Valencia, F.M.G. (2016). Chemical characteristics and functional properties of chitosan. In Chitosan in the preservation of agricultural commodities. Academic Press. pp. 3–31. DOI: 10.1016/B978-0-12-802735-6.00001-X
12. Zhuikova, Y.V., Zhuikov, V.A., Zubareva, A.A. (2020). Physicochemical and biological characteristics of chitosan/κ-carrageenan thin layer-by-layer films for surface modification of Nitinol. Micron. Vol. 138, no. 102922. DOI: 10.1016/j.micron.2020.102922
13. Manigandan, V., Karthik, R., Ramachandran, S., Rajagopal, S. (2018). Chitosan applications in food industry. In Biopolymers for food design. pp. 469–491. DOI: 10.1016/B978-0-12-811449-0.00015-3
14. Harkin, C., Mehlmer, N., Woortman, D.V. (2019). Nutritional and additive uses of chitin and chitosan in the food industry. In Sustainable Agriculture Reviews. no. 36, pp. 1–43. DOI: 10.1007/978-3-030- 16581-9_1
15. El-Aidie, S.A.A.M. (2018). A Review on Chitosan: Ecofriendly Multiple Potential Applications in the Food Industry. International Journal of Advancement in Life Sciences Research. pp. 1–14.
16. Hu, Z., Gänzle, M.G. (2019). Challenges and opportunities related to the use of chitosan as a food preservative. Journal of applied microbiology. no. 126(5), pp. 1318–1331. DOI: 10.1111/jam.14131
17. Gutiérrez, T.J. (2017). Chitosan applications for the food industry. Chitosan: derivatives, composites and applications. Wiley-Scrivener Publisher. pp. 185–232.
18. Tian, B., Liu, Y. (2020). Chitosan based biomaterials: From discovery to food application. Polymers for Advanced Technologies. no. 31(11), pp. 2408– 2421. DOI: 10.1002/pat.5010
19. Hernández-Téllez, C.N., Plascencia-Jatomea, M., Cortez-Rocha, M.O. (2020). Chitosan-based bionanocomposites: development and perspectives in food and agricultural applications. In Chitosan in the preservation of agricultural commodities. pp. 315–338. DOI: 10.1016/B978-0-12-802735-6.00012-4
20. Romanazzi, G., Feliziani, E. (2016). Use of chitosan to control postharvest decay of temperate fruit: effectiveness and mechanisms of action. In Chitosan in the preservation of agricultural commodities. pp. 155–177. DOI: 10.1016/B978-0-12-802735-6.00006-9
21. Blahopoluchna, A., Liakhovska, N. (2021). Effect of chitosan pretreatment on the quality of strawberries during cold storage. DOI: 10.15673/fst.v15i3.2151

 

Завантажити статью: 
ДолученняРозмір
PDF icon blagopoluchna_agro_2_2023.pdf432.56 КБ