1. Bieńkowski A.O. Key for identifcation of the ladybirds (Coleoptera: Coccinellidae) of European Russia and the Russian Caucasus (native and alien species). Zootaxa, 4472(2), 2018. P. 233–260. DOI:
https://doi.org/10.11646/ zootaxa.4472.2.2.
2. Roy H., Migeon A. Ladybeetles (Coccinellidae). Chapter 8.4. BioRisk, 4(July), 2010. P. 293–313. DOI: https:// doi.org/10.3897/biorisk.4.49.
3. Kundoo A.A., Khan A.A. Coccinellids as biological control agents of soft bodied insects: A review. Journal of Entomology and Zoology Studies, 5(5 R), 2017. P. 1362–1373.
4. Honěk A. Distribution and Habitats. Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), Chapter 4, 2012. P. 110–140. DOI:
https://doi. org/10.1002/9781118223208.ch4.
5. Ponnusamy N., Biwash G., Suprakash P. Faunistics and diagnostics of predaceous Coccinellids in Terai region of West Bengal. 81(4), 2019. P. 896–899.
6. Spatial and temporal changes in the abundance and compostion of ladybird (Coleoptera: Coccinellidae) communities, Current Opinion in Insect Science. / Honek A. et al. Volume 20, 2017. P. 61–67. DOI:
https://doi.org/10.1016/j. cois.2017.04.001.
7. Koch R.L., Galvan T.L. Bad side of a good beetle: The North American experience with Harmonia axyridis. BioControl, 53(1), 2008. P. 23–35. DOI:
https://doi.org/10.1007/ s10526-007-9121-1.
8. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini) / Escalona H.E. et al. BMC Evol Biol. 17, 151. 2017. DOI:
https://doi.org/10.1186/s12862-017-1002-3
9. Evaluation of Scymnus nubilus (Coleoptera: Coccinellidae) as a biological control agent against Aphis spiraecola and Cinara juniperi (Hemiptera: Aphididae) / Rosagro R.M. et al. Pest. Manag. Sci., 76, 2020. P. 818–826. DOI:
https://doi.org/10.1002/ps.5585.
10. Kundoo A.A., Khan A.A. Coccinellids as biological control agents of soft bodied insects: A review. Journal of Entomology and Zoology Studies. 5(5), 2017. P. 1362–1373.
11. Lumbierres B., Madeira F., Pons Prey X. Acceptability and Preference of Oenopia conglobata (Coleoptera: Coccinellidae), a Candidate for Biological Control in Urban Green Areas. Insects. 9(1), 2018. 7. DOI:
https://doi.org/10.3390/ insects9010007.
12. Effects of so-called “environmentally friendly” agrochemicals on the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinelidae) Eur. J. Entomol / Niedobová J. et al. 116, 2019. P. 173–177. DOI:
https://doi.org/10.14411/eje.2019.018.
13. Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata / Jalali M.A. et al. Phytoparasitica, 37(4), 2009. P. 323–326. DOI:
https://doi.org/10.1007/ s12600-009-0051-6.
14. Effect of synthetic insecticides on the larvae of Coccinella septempunctata from Greek populations / Skouras P.J. et al. Phytoparasitica 45(2), 2017. P. 165–173. DOI: https:// doi.org/10.1007/s12600-017-0577-y.
15. Effect of intra-guild predation and sub lethal concentrations of insecticides on the predation of coccinellids / Afza R. et al. Pakistan Journal of Zoology 51(2), 2019. P. 611–617. DOI:
https://doi.org/10.17582/journal. pjz/2019.51.2.611.617.
16. Koch R.L., Costamagna A.C. Reaping benefts from an invasive species: role of Harmonia axyridis in natural biological control of Aphis glycines in North America. BioControl 62, 2017. P. 331–340. DOI:
https://doi.org/10.1007/ s10526-016-9749-9. 17. Hiller T., Haelewaters D. A case of silent invasion: Citizen science confrms the presence of Harmonia axyridis (Coleoptera, Coccinellidae) in Central America. PLoS ONE 14(7), 2019. e0220082. DOI:
https://doi.org/10.1371/journal. pone.0220082.
18. Ukrainsky A.S., Orlova-Bienkowskaja M.J. Expansion of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) to European Russia and adjacent regions. Biological Invasions, 16(5), 2014. P. 1003–1008. DOI:
https://doi. org/10.1007/s10530-013-0571-3. 19. Viktor M., Gabor P. Aharlekinkatica (Harmonia Axyridis Pallas, 1773) (Coleoptera, Coccinellidae) Elterjedése Magyarországon És Megjelenése Romániában, Ukrajnában. Növényvédelem. 45 (9), 2009. P. 481–490.
20. Порівняльний аналіз екологічної структури фіторізноманіття полезахисних лісосмуг на полях органічного та традиційного виробництва / Мірошник Н.В. та ін. Екологічні науки. Випуск 3 (30), 2020. P. 64–72.
21. Kasprzak K., Niedbała W. Wskaźniki biocenotyczne stosowane przy porządkowaniu i analizie danych w badaniach ilościowych. In: Górny M., Grüm L., eds. Metody Stosowane w Zoologii Gleby. PWN, Warszawa, 1981. P. 379–416.
22. Mühlenberg M., Behre G.F., Bogenrieder A. Freilandökologie. 3rd ed. UTB Quelle & Meyer Verlag; Heidelberg, Germany: 1993.
23. Can Native Geographical Range, Dispersal Ability and Development Rates Predict the Successful Establishment of Alien Ladybird (Coleoptera: Coccinellidae) Species in Europe, Front. Ecol. Evol. / Soares A.O. et al. 6:57. 2018. DOI:
https://doi.org/10.3389/fevo.2018.00057.
24. Makwela M.M. Biodiversity of predatory beetle groups, carabidae and coccinellidae and their role as bioindicators in wheat agroecosystems. 2019 Dissertation. Master of science in the subject agriculture at the University of South Africa. 99 р. URL:
http://hdl.handle.net/10500/26902.
26. Гринько А.В. Энтомофаги вредителей озимой пшеницы в условиях Нижнего Дона. Научнопрактический электронный журнал Аллея Науки. № 3(19). 2018. URL:
https://alley-science.ru/domains_data/ files/12March18/ENTOMOFAGI%20VREDITELEY%20 OZIMOY%20PShENICY%20V%20USLOVIYaH%20 NIZhNEGO%20DONA.pdf.
27. Medvid Y. Fauna and Station Distribution of Coccinellids (Coleoptera: Coccinellidae) in the Right-Bank Forest Steppe. Interdepartmental Thematic Scientifc Collection of Plant Protection and Quarantine. (63), 2017. P. 123–128. DOI:
https://doi.org/10.36495/1606-9773.2017.63