1. Бітюцький В.С., Цехмістренко І.С., Мельниченко Ю.О., Цехмістренко С.І. Сигнальний шлях Wnt, метаболізм Кальцію і Фосфору та регулююча роль флавоноїду кверцетину. Технології, інструменти та стратегії реалізації наукових досліджень. Дніпро, 2023. С. 97–100.
2. Екологічні біотехнології “зеленого” синтезу наночастинок металів, оксидів металів, металоїдів та їх використання: наукова монографія / С.І. Цехмістренко та ін. Біла Церква, 2022. 270 с.
3. Цехмістренко С.І., Бітюцький В.С., Цехмістренко О.С. Фізіологічна роль флавоноїдів та їх практичне використання. Інноваційні технології 25 agrobiologiya.btsau.edu.ua Агробіологія, 2025, № 1 в агрономії, землеустрої, електроенергетиці, лісовому та садово-парковому господарстві: матеріали міжнародної науково-практичної конференції. Біла Церква, 2023. С. 67–69.
4. (−)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients / I. Ramirez-Sanchez et al. International journal of cardiology. 2013. Vol. 168(4). P. 3982–3990. DOI: 10.1016/j.ijcard.2013.06.089
5. [43] Role of flavonoids and iron chelation in antioxidant action / I. Morel et al. Methods in enzymology. Academic Press. 1994. Vol. 234. P. 437–443. DOI: 10.1016/0076-6879(94)34114-1
6. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements / K. Itoh et al. Biochemical and biophysical research communications. 1997. Vol. 236(2). P. 313–322. DOI: 10.1006/bbrc.1997.6943
7. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence / C.D. Kay et al. Annual Review of Food Science and Technology. 2017. Vol. 8(1). P. 155– 180. DOI: 10.1146/annurev-food-030216-025636
8. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies / W. Fan et al. Critical Reviews in Food Science and Nutrition. 2024. Vol. 64(11). P. 3522–3538. DOI: 10.1080/10408398.2022.2132375
9. Bionanotechnological strategies for the synthesis of quercetin conjugates with selenium nanoparticles for their targeting of the Wnt/Ca2+ signaling pathway / V. Bityutskyy et al. Технологія виробництва і переробки продукції тваринництва: зб-к наук. праць. Біла Церква: БНАУ, 2023. № 2(182). С. 100–107. DOI: 10.33245/2310-9289- 2023-182-2-100-107
10. Bionanotechnologies: synthesis of metals’nanoparticles with using plants and their applications in the food industry: A review. / S. Tsekhmistrenko et al. The Journal of Microbiology, Biotechnology and Food Sciences. 2021. Vol. 10(6). e1513. DOI: 10.15414/jmbfs.1513
11. Birringer M. Hormetics: dietary triggers of an adaptive stress response. Pharmaceutical research. 2011. Vol. 28. P. 2680–2694. DOI: 10.1007/s11095- 011-0551-1
12. Bors W., Michel C., Stettmaier K. Structureactivity relationships governing antioxidant capacities of plant polyphenols. Methods in enzymology. Academic Press. 2001. Vol. 335. P. 166–180. DOI: 10.1016/S0076-6879(01)35241-2
13. Bowtell J., Kelly V. Fruit-derived polyphenol supplementation for athlete recovery and performance. Sports Medicine. 2019. Vol. 49(Suppl 1). P. 3–23. DOI: 10.1007/s40279-018-0998-x
14. Chakrabarti S.K., Chattopadhyay D. Expanding Role of Epigenetics in Human Health and Disease. Exploratory Research and Hypothesis in Medicine. 2024. Vol. 9(3). P. 221–235. DOI: 10.14218/ERHM.2023.00086 15. Clifford M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta medica. 2004. Vol. 70(12). P. 1103–1114. DOI: 10.1055/s-2004-835835
16. Coffee-derived phenolic compounds activate Nrf2 antioxidant pathway in I/R injury in vitro model: A nutritional approach preventing age related-damages / E. Lonati et al. Molecules. 2022. Vol. 27(3). 1049 p. URL:
https://www.mdpi. com/1420-3049/27/3/1049#
17. Crozier A., Del Rio D., Clifford M.N. Bioavailability of dietary flavonoids and phenolic compounds. Molecular aspects of medicine. 2010. Vol. 31(6). P. 446–467. DOI: 10.1016/j.mam.2010.09.007
18. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia / J. Yu et al. PloS one. 2013. Vol. 8(2). e55934. DOI: 10.1371/journal. pone.0055934
19. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase / A.J. Day et al. FEBS letters. 2000. Vol. 468(2–3). P. 166–170. DOI: 10.1016/S0014- 5793(00)01211-4
20. Dietary polyphenols and chromatin remodeling / G.L. Russo et al. Critical reviews in food science and nutrition. 2017. Vol. 57(12). P. 2589– 2599. DOI: 10.1080/10408398.2015.1062353
21. Effects of food processing on polyphenol contents: A systematic analysis using Phenol Explorer data / J.A. Rothwell et al. Molecular nutrition & food research. 2015. Vol. 59(1). P. 160–170. DOI: 10.1002/ mnfr.201400494
22. El-Hadary A.A.R.E., Sulieman A.M., El-Shorbagy G.A. Comparative the antioxidants characteristics of orange and potato peels extracts under differences in pressure and conventional extractions. 2022. P. 159–174. DOI: 10.34302/ crpjfst/2022.14.1.13
23. Environmental growing conditions in five production systems induce stress response and affect chemical composition of cocoa (Theobroma cacao L.) beans / W. Niether et al. Journal of agricultural and food chemistry. 2017. Vol. 65(47). P. 10165–10173. DOI: 10.1021/acs.jafc.7b04490
24. Epigenetics and oxidative stress in aging / A. Guillaumet-Adkins et al. Oxidative medicine and cellular longevity. 2017. Vol. 1. 9175806. DOI: 10.1155/2017/9175806
25. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium / M. Chalopin et al. PloS one. 2010. Vol. 5(1). e8554. DOI: 10.1371/journal.pone.0008554
26. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles / A. Liskova et al. Epma Journal. 2021. Vol. 12(2). P. 155–176. DOI: 10.1007/s13167- 021-00242-5
27. Forman H.J., Davies K.J.A., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free 26 Агробіологія, 2025, № 1 agrobiologiya.btsau.edu.ua radical scavenging in vivo. Free Radical Biology and Medicine. 2014. Vol. 66. P. 24–35. DOI: 10.1016/j. freeradbiomed.2013.05.045
28. Hidalgo M., Sánchez-Moreno C., de Pascual-Teresa S. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food chemistry. 2010. Vol. 121(3). P. 691–696. DOI: 10.1016/j. foodchem.2009.12.097
29. How should we assess the effects of exposure to dietary polyphenols in vitro? / P.A. Kroon et al. The American journal of clinical nutrition. 2004. Vol. 80(1). P. 15–21. DOI: 10.1093/ajcn/80.1.15
30. Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro / D. Esposito et al. Journal of Agricultural and Food Chemistry. 2014. Vol. 62(29). P. 7022–7028. DOI: 10.1021/ jf4051599
31. Intake and time dependence of blueberry flavonoid–induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity / A. Rodriguez-Mateos et al. The American journal of clinical nutrition. 2013. Vol. 98(5). P. 1179–1191. DOI: 10.3945/ajcn.113.066639
32. Jana S., Rastogi H. Effects of caffeic acid and quercetin on in vitro permeability, metabolism and in vivo pharmacokinetics of melatonin in rats: potential for herb-drug interaction. European journal of drug metabolism and pharmacokinetics. 2017. Vol. 42. P. 781–791. DOI: 10.1007/s13318-016-0393-7
33. Liang S., Tian X., Wang C. Nanozymes in the treatment of diseases caused by excessive reactive oxygen specie. Journal of Inflammation Research. 2022. P. 6307–6328. DOI: 10.2147/JIR.S383239
34. Lotito S.B., Frei B. The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids. Free Radical Biology and Medicine. 2004. Vol. 37(2). P. 251–258. 10.1016/j.freeradbiomed.2004.04.019
35. Maraldi T. Natural compounds as modulators of NADPH oxidases. Oxidative medicine and cellular longevity. 2013. Vol. 2013(1). 271602. DOI: 10.1155/2013/271602
36. Merry T.L., Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? The Journal of physiology. 2016. Vol. 594(18). P. 5135–5147. DOI: 10.1113/JP270654
37. Nani A., Tehami W. Targeting inflammasome pathway by polyphenols as a strategy for pancreatitis, gastrointestinal and liver diseases management: an updated review. Frontiers in Nutrition. 2023. Vol. 10. 1157572. DOI: 10.3389/fnut.2023.1157572
39. New developments in AMPK and mTORC1 cross-talk / W.J. Smiles et al. Essays in Biochemistry. 2024. Vol. 68(3). P. 321–336. DOI: 10.1042/ EBC20240007
40. Oracz J., Zyzelewicz D., Nebesny E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: A review. Critical reviews in food science and nutrition. 2015. Vol. 55(9). P. 1176–1192. DOI: 10.1080/10408398.2012.686934
41. Peluso I., Raguzzini A., Serafini M. Effect of flavonoids on circulating levels of TNFα and IL6 in humans: a systematic review and metaanalysis. Molecular Nutrition & Food Research. 2013. Vol. 57(5). P. 784–801. DOI: 10.1002/mnfr.201200721
42. Pinheiro R.G.R., Pinheiro M., Neves A.R. Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials. 2021. Vol. 11(10). 2658 p. URL:
https://www.mdpi. com/2079-4991/11/10/2658#
43. Polyphenolics from acai (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose-and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126 / G.D. Noratto et al. Journal of agricultural and food chemistry. 2011. Vol. 59(14). P. 7999–8012. DOI: 10.1021/jf201056x
44. Polyphenols and human health: The role of bioavailability / C.Di Lorenzo et al. Nutrients. 2021. Vol. 13(1). 273 p. DOI: 10.3390/nu13010273
45. Polyphenols as NLRP3 inflammasome modulators in cardiometabolic diseases: a review of in vivo studies / M. Villalva et al. Food & Function. 2023. Vol. 14(21). P. 9534–9553. DOI: 10.1039/ D3FO03015F
46. Polyphenols: Immunonutrients tipping the balance of immunometabolism in chronic diseases / C. Ferreira et al. Frontiers in Immunology. 2024. Vol. 15. 1360065. DOI: 10.3389/fimmu.2024.1360065
47. Pon Matheswari P., Jenit Sharmila G., Murugan C. Green synthesis of selenium nanoparticles using Delonix regia and Nerium oleander flower extract and evaluation of their antioxidant and antibacterial activities. Inorganic and Nano-Metal Chemistry. 2024. Vol. 54(5). P. 488–499. DOI: 10.1080/24701556.2021.2025099
48. Quercetin regulates calcium and phosphorus metabolism through the Wnt signaling pathway in broilers / B. Wang et al. Frontiers in Veterinary Science. 2022. Vol. 8. 786519. DOI: 10.3389/ fvets.2021.786519
49. Ren Q., Sun S., Zhang X.D. Redox-active nanoparticles for inflammatory bowel disease. Nano Research. 2021. Vol. 14. P. 2535–2557. DOI: 10.1007/ s12274-021-3303-5
50. Sanchez-Garrido J., Shenoy A.R. Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy. 2021. Vol. 17(7). P. 1571–1591. DOI: 10.1080/15548627.2020.1783119
51. Selectivity of neutrophil 5-lipoxygenase and cyclo-oxygenase inhibition by an anti-inflammatory flavonoid glycoside and related aglycone flavonoids / M.A. Moroney et al. Journal of Pharmacy and Pharmacology. 1988. Vol. 40(11). P. 787–792. DOI: 10.1111/j.2042-7158.1988.tb05173.x 27
52. Sies H. Total antioxidant capacity: appraisal of a concept. The Journal of nutrition. 2007. Vol. 137(6). P. 1493–1495. DOI: 10.1093/jn/137.6.1493
53. Synthesis of functionalized selenium nanoparticles with the participation of flavonoids / A. Demchenko et al. International Science Group. ISG-KONF. COM. Tokyo, Japan, 2022. P. 29–35. DOI: 10.46299/ISG.2022.1.17
54. Synthesis of quercetin-functionalized silver nanoparticles by rapid one-pot approach / S. Pandian et al. BioTechnologia. 2021. Vol. 102(1). P. 75–84. DOI: 10.5114/bta.2021.103764
55. Tea polyphenol (−)-epigallocatechin3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines / M.Z. Fang et al. Cancer research. 2003. Vol. 63(22). P. 7563–7570.
56. The complexity of the Nrf2 pathway: beyond the antioxidant response / Y. Huang et al. The Journal of nutritional biochemistry. 2015. Vol. 26(12). P. 1401–1413. DOI: 10.1016/j.jnutbio.2015.08.001
57. The Epigenetic Link between Polyphenols, Aging and Age-Related Diseases / I. Arora et al. Genes (Basel). 2020. 11. 1094. DOI: 10.3390/ genes11091094
58. Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development / C.R. Ferraz et al. Molecules. 2020. Vol. 25(3). 762 p. URL:
https://www.mdpi.com/1420-3049/25/3/762#