You are here

Intensity of CO2 emissions from sod-podzolic soil at different doses of ameliorants and fertilization of winter rape in Western Polissia

Observations by the intensity of CO2 emissions on sod-podzolic soil in the feld of winter rape showed its dependence on fertilizer systems, liming, seasonal dynamics of air temperature, moisture conditions and soil acidity. In summer, there is an increase in the release of carbon dioxide, which is associated with maximum biological activity of the soil. It was found that in the spring rosette phase in variant N120P90K120 with dose 0.5 Ha (by the hydrolytic acidity) of dolomite flour the emission intensity was the highest – 121.3 and 130.1 mg of CO2/kg of soil. The lowest evaporation rate of carbon dioxide (116 mg/kg of soil) was recorded when applying 1.5 Ha doses of dolomite flour on the background of the same fertilizer. The decrease of carbon dioxide emissions in the phase of rape budding and flowering at an air temperature of 15.2–18.4 °С and productive moisture of 10.8–14.6 mm in the 0–20 cm soil layer it was noted. By the addition of dolomite flour decreasing was 5–20 % to the control and 6–23 % to the background of N120Р90К120. In these phase of culture vegetation, the lowest CO2 fluxes from the soil (100.9 mg / kg) was observed by the application of dolomite flour at a dose of 1.5 Ha on the fertilization background, while on the control it was 105.7 mg CO2/kg of soil. A similar trend was found in the phase of technical maturity of winter rape. At an air temperature of 28.6 °С and a reserve of productive soil moisture of 9.3 mm (0–20 cm layer), the emission index of carbon dioxide for the specifed dose of liming and fertilizer was at the level of 60.3 mg СО2/kg. It should be noted that in control and variant of N120Р90К120 application (background) the decreasing of sod-podzolic soil acidity (pHKCl) to 4.1–4.0 units caused an increase of CO2 production by the soil during the growing season of winter rape. It was proved that the use of dolomite flour at a dose of 1.5 На on the background of N120Р90К120 had a more complete neutralizing effect, which helped to reduce the intensity of CO2 emissions by 6.4–22.2 %.
Key words: winter rape, CO2 emissions, fertilizers, ameliorants, soil acidity, productivity.

 

Reference: 
1. Lal, R., Mohtar, R.H., Assi, A.T., Ray, R., Baybil, H., Lahn, M. (2017). Soil as a Basic Nexus Tool: Soils at the Center of the Food–Energy–Water Nexus. Curr Sustainable Renewable Energy. Rep 4. pp. 117–129. DOI: 10.1007/s40518-017-0082-4.
2. Piccolo, A., Spaccini, R., Drosos, M., Vinci, G., Cozzolino, V. (2018). The Molecular Composition of Humus Carbon: Recalcitrance and Reactivity in Soils. The Future of Soil Carbon, Its Conservation and Formation. Academic Press. Edition 1st. Chapter 4. pp. 87–124. DOI: 10.1016/B978-0-12-811687-6.00004-3.
3. Popirnuy, M.A., Siabruk, O.P., Akimova, P.V., Shevchenko, M.V. (2020). Novitni integratyvni metody doslidzhennnia stabilizataii organichnoho vugletsiu za riznogo obrobitku gruntu [The latest integrative methods for studying the stabilization of organic carbon under different tillage]. Agrokhimii i gruntoznavstva [Agrochemistry and Soil science], no. 90, pp. 13–28. DOI: 10.31073/acss90.
4. Tkachuk, V.P., Trofymenko, P.I. (2020). Vmist humusu za riznoho vykorystannia dernovopidzolystoho supishchanoho gruntu ta obsiahy emisiinykh vtrat CO2 [Humus content with different use of sod-podzolic sandy soil and volumes of CO2 emissions]. Naukovi dopovidi NUBiP Ukrainy [Scientifc reports of NULES of Ukraine], no. 2 (84). DOI: 10.31548/dopovidi2020.02.
5. Randerson, J.T., Chapin, F.S. (2002). Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecological Applications. no. 12, pp. 937–947. Available at: https:// andrewsforest.oregonstate.edu/sites/default/fles/lter/ pubs/pdf/pub3124.pdf.
6. Trofymenko, P.I. (2018). Hazovyi sklad nadhruntovoho sharu povitria atmosfery ta yoho rol u formuvanni obsiahiv emisii haziv iz gruntu [Gas composition of the above-ground layer of atmospheric air and its role in the formation of gas emissions from the soil]. Tavriiskyi naukovyi visnyk [Taurida Scientifc Herald], no. 103, pp. 227–235. Available at: http://tnvagro.ksauniv.ks.ua/archives/103_2018.pdf
7. Trumbore, S. (2006). Carbon respired by terrestrial ecosystems – recent progress and challenges. Global Change Biology. Vol. 12, pp. 141–153. DOI: 10.1111/j.1365-2486.2006.01067.x
8. Trofymenko, P.I., Trofymenko, N.V., Zubova, O.V., Karas, I.F. (2016). Zapasy orhanichnoho vuhletsiu u dernovo-pidzolystykh ornykh hruntakh Polissia Ukrainy [Reserves of organic carbon in sod-podzolic arable soils of Polissya of Ukraine]. Visnyk ZhNAEU [Herald of ZhNAEU], no. 1, Vol. 1, pp. 46–52.
9. Revtie-Uvarova, A.V., Nikonenko, V.M., Karatsiuba, O.V, Slidenko, O.I. (2020). Parametryzatsiia zmin umistu orhanichnoho vuhletsiu zalezhno vid systemy udobrennia [Parameterization of changes in organic carbon content depending on the fertilizer system]. Visnyk ahrarnoi nauky [Bulletin of Agricultural Science], no. 11, pp. 16–23. DOI: 10.31073/agrovisnyk202011-02
10. Schlesinger, W.H., Andrews, J.A. (2020). Soil respiration and the global carbon cycle. Biogeochemistry. Vol. 48, pp. 7–20. DOI: 10.1023/A:1006247623877
11. Saiko, V.F. (2002) Problemy zabezpechennia gruntiv orhanichnoiu rechovynoiu [Problems of providing soils with organic matter]. Visnyk ahrarnoi nauky [Bulletin of Agricultural Science], no. 11, pp. 5–8.
12. Agren, G.I., Hyvonen, R., Nilsson, T. (2007). Are Swedish forest soils sinks or sources for CO 2 – model analyses based on forest inventory data. Biogeochemistry. no. 82, pp. 217–227. DOI: 10.1007/ s10533-007-9151-x. 13. Siabruk, O. (2013). Sezonna dynamika produkuvannia CO2 ta obsiahy vtrat vuhletsiu gruntu za riznykh sposobiv obrobitku, system zemlerobstva ta udobrennia [Seasonal dynamics of CO2 production and volumes of soil carbon losses under different tillage methods, farming and fertilizer systems]. Visnyk Lvivskoho NAU. Ahronomiia [Journal of Lviv NAU. Agronomy], no. 17(1), pp. 130–137. Available at: http://visnuk.kl.com.ua/joom/arkhiv-nomeriv/ ahronomiia.html.
14. Kovalenko, S.A., Matukhno, Yu.D., Mukosii, M.P. (2013). Zminy pokaznykiv balansu humusu u gruntakh silskohospodarskykh uhid Chernihivskoi oblasti [Changes in humus balance indicators in soils of agricultural lands of Chernihiv region]. Ahroekolohichnyi zhurnal [Agroecological journal], no. 3, pp. 52–56.
15. Melnychuk, A.O., Tarariko, M.Iu. (2015). Tsykl vuhletsiu ta azotu za riznykh system udobrennia v sivozmini na dernovo-pidzolystomu grunti v Polissi [The cycle of carbon and nitrogen under different fertilizer systems in crop rotation on sod-podzolic soil in Polissia]. Zbalansovane pryrodokorystuvannia [Balanced natue using], no. 1, pp. 53–56. Available at: http://nbuv.gov.ua/UJRN/Zp_2015_1_14.
16. Naymov, A.B. (2008) Dukhanie pochvu: sostavlyayushchie, ekolohucheskie funktsii, geografcheskie zakonomernosti [Soil respiration: components, ecological functions, geographical patterns]. Novosybyrsk, 208 p.
17. Natsyonalnuj kadastr antropogennuh vubrosov iz istochnikov i absorbtsii poglotitelyami parnikovuh hazov v Ukraune za 1990–2013 gg [National inventory of anthropogenic emissions from sources and removals by sinks of greenhouse gases in Ukraine for 1990– 2013]. Kyiv, 2015, 569 p.
18. Kravchuk, V., Pavlyshyn, M., Husar, V. (2013) Suchasni ahrotekhnolohii ta «hnuchki mekhanizmy» Kiotskoho protokolu [Modern agricultural technologies and "flexible mechanisms" of the Kyoto Protocol]. Tekhnika i tekhnolohii APK [Machinery and technology of agro-industrial complex], no. 5, pp. 29–33.
19. Larionova, A.A., Kurganova, Y.N., Lopes de, Hereniu V.O. (2010). Emissiya dioksida ygleroda iz agroseruh pochv pri izmenenii klimata [Emission of carbon dioxide from agro-gray soils under climate change]. Pochvovedenye [Soil science], no. 2, pp. 186–195.
20. Truskavetskyi, R.S., Shymel, V.V. (2001). Porushennia hazorehuliatornykh funktsii hidromorfnykh gruntiv pid vplyvom drenazhu ta obrobitku [Violation of gas-regulatory functions of hydromorphic soils under the influence of drainage and cultivation]. Visnyk KhNAU “Gruntoznavstvo” [Bulletin of KhNAU “Soil science”], no. 3, pp. 152–156.
21. Larionova, A.A., Evdokimov, I.V., Kurhanova, I.N., Sapronov, D.V., Kyznetsova, L.H., Lopes de, Herenyu V.O. (2003). Dukhanie kornej i ego vklad v emyssiyu CO2 iz pochvu [Root respiration and its contribution to CO 2 emission from the soil]. Pochvovedenie [Soil science], no. 2, pp. 183–194.
22. Subke, J.-A., Bahn, М. (2010). On the temperature sensitivity of soil respiration: can we use the immeasurable to predict the unknown? Soil Biology and Biochemistry. Vol. 42, pp. 1653–1656. DOI: 10.1016/j.soilbio.2010.05.026
23. Snitynskyi, V.V., Habryiel, A.I., Olifr, Yu.M., Hermanovych, O.M. (2015). Humusnyi stan ta emisiia dioksydu vuhletsiu v ahroekosystemakh [Humus state and carbon dioxide emissions in agroecosystems]. Ahroekolohichnyi zhurnal [Agroecological journal], no. 1, pp. 53–58.

 

Download this article: 
AttachmentSize
PDF icon polioviy_2022-1-36-42.pdf489.93 KB