You are here

Wx gene polymorphism in winter triticale collection samples

The purpose of the study was to identify the collection of winter triticale in the allelic state of the waxi-genes and to identify sources with the presence of waxi-alleles for these genes. The surveys were conducted over 2017–2019 at the NSc Institute of Agriculture. The subject of the research are 43 collection samples of winter triticale, 29 of which are numbers of own breeding, 14 – breeding varieties of the National Institute of Agriculture of NAAS (9) and scientifi c institutions of Poland (1) and the Russian Federation (4). For control, we used soft winter waxy-wheat Sofi yka and wheat with wild of starch Oksana. Field, laboratory (infrared spectrometry, light
microscopy, polymerase chain reaction (PCR)) methods, weights and mathematical and statistical methods of research were used to evaluate the collection material.
According to the results of molecular genetic analysis of the Wx gene polymorphism in the winter triticale collection samples, it was found that all the tested samples had wild type alleles according to the Wx-B1 gene and were characterized by the absence of the Wx-D1 gene. The Wx-A1 gene revealed samples with both wild-type alleles and presence in the genome of the wax-allele. 8 collections with Wx-A1 gene alleles were selected: selection numbers 141, 153, 201, 223, 229 and varieties Lubomir, Petrol and Poliskii 7.
The selected samples varied signifi cantly in terms of such characteristics as grain productivity, weight of 1000 grains, starch content. The tendency to decrease the size of the granules and increase the evenness of the granulometric structure of the starch in the samples with the presence of the wax-allele of the Wx-A1 gene was established. Wx-A1 gene allele samples are valuable starting material for the creation of new winter triticale varieties with increased amylopectin starch suitable for bioethanol processing.
Key words: winter triticale, bioethanol, starch, polymerase chain reaction, amylopectin, amylose, allelic state of wax genes, waxi-allele, wild type.
 

Reference: 
1. Song, Y., Jane, J. (2000). Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydrate Polymers. no. 41, pp. 365–377. Available at: https:// doi.org/10.1016/S0144-8617(99)00098-3
2. Grant, L.A., Vignaux, N., Doehlert, D.C. (2001). Starch сharacteristics of waxy and nonwaxy tetraploid (Triticum turgidum L. var. durum) wheats. Cereal Chemistry Journal. Vol. 78, no. 5, 590 p. Available at: https://doi. org/10.1094/CCHEM.2001.78.5.590.
3. Kim, W., Johnson, J.W., Graybosch, R.A., Gaines, C.S. (2003). Physicochemical Properties and End-use Quality of Wheat Starch as a Function of Waxy Protein Alleles. Journal of Cereal Science. no. 37, pp. 195–204. Available at: https://pdfs.semanticscholar.org/663f/07be109e5c08bb8691e3994c87c1c56495e6.pdf
4. Saito, M., Vrinten, P., Ishikawa, G. (2009). A novel codominant marker for selection of the null Wx-Bl allele in wheat breeding programs. Моl. Breed. no. 23, pp. 209–217. Available at: https://doi.org/10.1007/s11032-008-9226-y.
5. Rybalka, O.I. Chervonis, M.V., Morhun, B.V. (2013). Henetychni ta selektsiini kryterii stvorennia sortiv zernovykh kultur spyrto-dystyliatnoho napriamu tekhnolohichnoho vykorystannia zerna [Genetic and breeding criterias for the creation of varieties of cereals alcohol-distillate direction of technological use of grain]. Fiziologiya i biokhimiya kul`turnih rastenij [Physiology and biochemistry cultural plants], Vol. 45, no. 1, pp. 3–19. Available at: http://dspace.nbuv.gov.ua/handle/123456789/66448
6. Gago, F., Horváthová, V., Ondáš, V. (2014). Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation. Chemical Papers. Vol. 68, Issue 3, pp. 300–307. Available at: https://doi.org/10.2478/s11696-013-0454-1
7. Samborskaya, E.V. (2014). Nasledovanie voskovidnogo (wx) tipa krakhmala v zerne prosa i sozdanie donorov e`togo priznaka [Inheritance of the waxy (wx) type of starch in millet grain and the creation of donors of this trait]. Zernobobovy`e i krupyany`e kul`tury` [Legumes and cereals], no. 4 (12), pp. 17–20. Available at: https://cyberleninka.ru/article/n/nasledovanie-voskovidnogo-wx-tipa-krah...
8. Xurun, Y., Heng, Y., Jing, Z., Shanshan S., Liang Z. (2015). Comparison of endosperm starch granule development and physicochemical properties of starches from waxy and non-waxy wheat. Available at: https://doi.org/10.1080/10 942912.2014.980949
9. Yaeel, I., Francisco, J. (2015). Physicochemical characterization of starch from hexaploid triticale (х Triticosecale Wittmack) genotypes. Journal CYTA Journal of Food. Vol. 13, Issue 3, pp. 420–426. Available at: https://www.researchgate.net/publication/273164147_Physicochemical_chara... hexaploid_triticale_X_Triticosecale_Wittmack_genotypes
10. Evžen, Š., Dvořáček, V. (2017). New processing and applications of waxy starch (a review) Journal of Food Engineering. August. Vol. 206, pp. 77–87. Available at: https://doi.org/10.1016/j.jfoodeng.2017.03.006
11. Xiu-Qiang, H., Brûlé-Babel, А. (2010). Development of genome-specifi c primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples BMC. Res Notes. no. 3, 140 p. Available at: https://doi.org/10.1186/1756-0500-3-140
12. Liuling, Y., Mrinal, B. (2001). Characterization of waxy proteins and waxy genes of T. timopheevii and T. zhukovskyi and implications for evolution. Genome. Vol. 44, no. 4, pp. 582–588. Available at: https://doi.org/10.1139/g01-036
13. Fujita, N., Hasegawa, H., Taira, T. (2001). The isolation and characterization of a Wx mutant of diploid wheat (Triticum monococcum L.). Plant Sci. no. 160, pp. 595–602. Available at: https://doi.org//10.1016/S0168-9452(00)00408-8
14. Nakamura, T., Vrinten, P., Saito, M., Konda, M. (2002). Rapid classifi cation of partial waxy wheats using PCR based markers. Genome. no. 45, pp. 1150–1156. Available at: http://dx.doi.org/10.1139/g02-090
15. Petrova, I.V., Chebotar`, S.V., Ry`balka, A.I. (2007). Identifi kacziya Wx-genotipov sredi sortov ozimoj myagkoj psheniczy` [Identifi cation of Wx genotypes among varieties of winter common wheat]. Czitologiya i genetika [Cytology and genetics], Vol. 41, no. 6, pp. 11–17. Available at: http://cytgen.com/ru/2007/11-17N6V41.htm
16. Klimushina, M.V., Divashuk, M.G., Karlov, G.I. (2009). Molekulyarno-geneticheskaya kharakteristika kollekczii myagkoj psheniczy` po genam, otvechayushhim za khlebopekarny`e i tekhnologicheskie kachestva muki [Molecular genetic characteristics of the collection of soft wheat by the genes responsible for the baking and technological qualities of fl our]. Izvestiya TSKhA [News TAIA], no. 3, pp. 81–88. Available at: https://cyberleninka.ru/article/n/molekulyarno-geneticheskaya-harakteristika-kollektsii-myagkoy-pshenitsy-po-genam-otvechayuschim-za-hlebopekarnye-i-tehnologicheskie
17. Abdulina, I.R., Vafi n, R.R., Zajnullin, L.I., Alimova F.K. (2012). Vy`yavlenie allel`nogo varianta Wx-A1g Waxy-gena u genotipov yarovoj psheniczy` otechestvennoj selekczii [Identifi cation of the allelic variant of the Wx-A1g Waxy gene in genotypes of spring wheat of domestic breeding]. Uchen. zap. Kazan. un-ta. [Ser. Natural science], no. 4. Available at: https://cyberleninka.ru/article/n/vyyavlenie-allelnogo-varianta-Wx-a1g-waxy-gena-u-genotipov-yarovoy-pshenitsy-otechestvennoy-selektsii
18. Yuangen, L., Ganlin, Z., Yan, L. (2013). Identifi cation of two novel waxy alleles and development of their molecular markers in sorghum. Genome. no. 56 (5), pp. 283–288. Available at: https://doi.org/10.1139/gen-2013-0047
19. Zhirnova, I.A., Ry`sbekova, A.B., Dyusibaeva, E`.N., Sejtkhozhaev, A.I. (2019). Oczenka allel`nogo sostoyaniya Wx genov kollekczii prosa (Panicum miliaceum L.) na osnove molekulyarno-geneticheskikh markerov [Assessment of the allelic state of the Wx genes of the millet collection (Panicum miliaceum L.) based on molecular genetic markers]. Vestnik Karagandinskogo universiteta [Bulletin of the Karaganda University], no. 1 (93), pp. 66–74. Available at: https://rep.ksu.kz/bitstream/handle/data/5822/ Zhirnova_I_A_66-74.pdf?sequence=1
20. Yamamori, M., Quynh, T. (2000). Diff erential eff ects of Wx-A1, -B1 and -D1 protein deciencies on apparent amylose content and starch pasting properties in common wheat. Theoretical and Applied Genetics. no. 100, pp. 32–38.
21. Rodriguez, M., Taladriz, M.T., Carrillo, J.M. (2004). Waxy proteins and amylose content in diploid Triticeae species with genomes A, S and D. Plant Breed. no. 123, pp. 294–296. Available at: https://doi.org/10.1111/j.1439-0523.2004.00883.x.
22. Morhun, B.V., Stepanenko, O.V., Stepanenko, A.L., Rybalka, O.I. (2015). Molekuliarno-henetychna identyfi katsiia polimorfi zmu heniv Wx u hibrydakh miakoi pshenytsi za dopomohoiu multypleksnykh polimeraznykh lantsiuhovykh [Molecular-genetic identifi cation of Wx gene polymorphism in soft wheat hybrids by multiplex polymerase chain]. Fyzyolohyia rasteyyi y henetyka [Plant physiology and genetics], Vol. 47, no. 1, pp. 25–35. Available at: http://nbuv.gov.ua/UJRN/FBKR_2015_47_1_5
23. Juan, B., Carlos, G. (2016). Wheat waxy proteins: polymorphism, molecular characterization and eff ects on starch properties. Theoretical and Applied Genetics. January. Vol. 129, Issue 1, pp. 1–16. Available at: https://doi.org/10.1007/s00122-015-2595-9
24. Al-Dhaher, Sahar. (2015). Properties of starch from Australian waxy wheat. Available at: https://ses.library.usyd. edu.au/handle/2123/12896
25. Yaeel, I., Oliviert, M., Carmen L. Del, T., Francisco, J. (2018). Тhe structural characteristics of starches and their functional properties. CyTA – Journal of Food. Vol. 16, pp. 1003–1017. Available at: https://doi.org/10.1080/19476337.2018.1518343
26. Evžen, Š., Dvořáček, V. (2017). New processing and applications of waxy starch (a review). Journal of Food Engineering. Vol. 206, pp. 77–87. Available at: 10.1016/j.jfoodeng.2017.03.006
 
Download this article: 
AttachmentSize
PDF icon levchenko_1_2020.pdf1.07 MB