You are here

Spatial-temporal dynamics of phytoindication assessments of acidity and salt regime of Nikopol manganese ore basin tehnozems

The result of the research conducted in 2012–2014 reveal the regularities of spatial and temporal dynamics of phytoindication assessments of acidity and salt regime of most typical tehnozems of the Nikopol manganese ore basin in the process of agriculture recultivation: pedozems, sod-litogenic soils on the gray-green clay, red-brown clay and loesses-like clay loams.

Ya. P. Didukh phytoindication scale of acidity (Rc) and salt regime (Sl) was applied in the investigation. Phytoindication assessment was performed by a regular grid of test that allows you to track changes in the given point of space for some time.
A relatively limited range of time allows you to describe the trends and variability using linear model. Using the coefficients of the linear dependence of phytoindicator assessments from time to time at a particular point in space, we can show the spatial variable temporal dynamics of ecological indicators. Variation of free coefficient b indicates the retrospective patterns of acidity within the plots of tehnozems a year before the beginning (starting). In all types of tehnozems acidity creates regular spatial patterns, but they change in time. Features of spatial variation coefficient and point to the fact that areas with high acidity tend to it, and with reduced – on the contrary, it increases. It is shown that the conditions of acidity of tehnozems are in the range from subacidofilic to neutrofilic. The smallest level of acidity of edafotops was found for pedozems (pH = 6.25–6.50) and greatest was found for sod-litogenic soils on the loesses-like clay loams (pH = 6.53–6.86). Edafotops salt regime is favorable from semievtrofs to evtrofs. For assessments salt regime is also characterized by specific spatial patterns that change in time. Each tehnozems type is characterized by specific patterns of spatial variation indices of the salt regime. Features are as uniform size and shape in this indicator areas (areas with regular or elevated values of the phytoindicator scale) and their mutual boundaries are located and contrast. Thus, for the sod lithogenic soil on gray-green clay characteristic limited areas with significantly higher values and considerably reduced assessments salt regime. In all types of tehnozems indicators of acid and salt regimes create regular spatial patterns that they change in time. These patterns indicate the presence of autooscillator spatial-temporal processes in tehnozems endogenous nature confirming forming in them the mechanisms of functional integrity, who ultimately inherent natural soils.

Key words: tehnozems, phytoindication, ecological regimes, acidity, salt, spatial variation.

 

Reference: 
  1. Millennium Ecosystem Assessment, Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC. 2005.
  2. Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, C., Ramankutty, N., Snyder, P.K. Global consequences of land use. Science, 2005, Vol. 309, 570 p. Retrieved from: https://doi.org/10.1126/ science.1111772.
  3. Zabaluyev, V.O., Tarika, O.H., Nadtoka, R.I. (2002). Umovy, shcho vyznachayut' stiykist' i stabil'nu produktyvnist' bahatorichnykh kul'turfitotsenoziv na shtuchnykh edafotopakh rekul'tyvovanykh zemel' [The conditions that determine the stability and consistent performance of perennial culturphytoceanosis on artificial edafotops of the reclaimed land]. Visnyk Kharkivs'koho natsional'noho ahrarnoho universytetu [Bulletin of the Kharkov National Agrarian University], no. 1, pp. 211–213.
  4. Zabaluyev, V.O. (2006). Edafo-fitotsenotychne obgruntuvannya formuvannya i funktsionuvannya stiykykh ahroekosystem na rekul'tyvovanykh zemlyakh Stepu Ukrayiny. Dys. d-ra nauk [Edafo-phytocoenotic study of the formation and functioning of sustainable agroecosystems on the reclaimed lands of Steppe Ukraine. Dr. sci. diss.]. Kyiv, 361 p.
  5. Zhukov, O.V., Zadorozhna, H.O., Maslikova, K. P., Andrusevych, K.V., Lyads'ka, I.V. (2017). Ekolohiya tekhnozemiv [Ecology of the technozems]. Dnipro, Zhurfond, 442 p.
  6. Demydov, A.A., Kobets, A.S., Hrytsan, Yu.Y., Zhukov, A.V. (2013). Prostranstvennaya ahroekolohyya y rekul'tyvatsyya zemel' [Spatial agroecology and lands reclamation]. Dnepropetrovsk, «Svydler A.L.», 560 p. Retrieved from: DOI: 10.13140/RG.2.1.5175.5040
  7. Yeterevs'ka, L.V., Momot, H.F., Lekhtsiyer, L.V. (2008). Rekul'tyvovani grunty pidkhody do klasyfikatsiyi i systematyky [Reclaimed soils: approaches to classification and systematics]. Gruntoznavstvo [Soil cultivation], Vol. 9, no. 3–4, pp. 147–150.
  8. Zverkovskyy, V.N. (1999). Byoheotsenolohycheskoe obosnovanye lesnoy rekul'tyvatsyy zemel', narushennykh uhol'noy promyshlennost'yu v stepnoy zone Ukrayny. Dyss. ... d-ra byol. Nauk [Biogeocenologic rationale for forest reclamation violated the coal industry in the steppe zone of Ukraine. Dr. biol. sci. diss.]. Dnepropetrovsk, 566 p.
  9. Bekarevich, N.E., Masjuk, N.T. (1966). Jekologo-biologicheskie predposylki sel'skohozjajstvennogo osvoenija uchastkov otkrytyh razrabotok v Nikopol'skom margancevorudnom bassejne [Ecological and biological background agricultural development opencast sites in Nikopol mangan ore basin]. Pochvy Dnepropetrovskoj oblasti i puti ih racional'nogo ispol'zovanija [The soil of the Dnepropetrovsk region and path management]. Dnepropetrovsk, Promіn', pp. 69–74.
  10. Masyuk, N.T. (1989). Vvedenie v selskohozyaystvennuyu ekologiyu [Introduction to agricultural Ecology]. Dnepropetrovsk, Dnepropetr. s.-h. in-t., 192 p.
  11. Travleev, A. P. (1989). Nauchnyie osnovyi tehnogennoy biogeotsenologii [Scientific basis of man-made biogeocenology]. Biogeotsenologicheskie issledovaniya tehnogennyih landshaftov stepnoy Ukrainyi [Biogeocenological study of man-made landscape of steppe Ukraine]. Dnepropetrovsk, DGU, pp. 4–9.
  12. Uzbek, I.Kh. (2001). Ekoloho-biolohichna otsinka edafotopiv tekhnohennykh landshaftiv stepovoyi zony Ukrayiny [Ecological and biological evaluation of edafotopìv industrial landscapes of the steppe zone of Ukraine. Dr. biol. sci. diss.]. Dnipropetrovsk, DNU, 36 p.
  13. Hrytsan, Yu.Y., Demydov, O. A., Zhukov, O. V. (2009). Ekolohichne riznomanittya ahrobioheotsenoziv yak peredumova vprovadzhennya systemy tochnoho zemlerobstva na rekul'tyvovanykh zemlyakh [Ecological diversity of agrobiogeocenosis as a precondition for the introduction of a system of precision farming in the reclaimed lands]. Strukturna perebudova ta ekolohizatsiya ekonomiky v konteksti perekhodu Ukrayiny do zbalansovanoho rozvytku. Mater. III Ukrayins'koho ekolohichnoho konhresu [Structural rebuilding and greening the economy in the context of Ukraine's transition to sustainable development. Proceed. III Ukrainian ecological Congress]. Kyiv, Center for Ecological and Technical Information and Information, pp. 75–78.
  14. Anand, M., Tucker, B.C., Desrochers, R. Ecological monitoring of terrestrial ecosystem recovery from man-made perturbation: assessing community complexity. Proceedings of the 10-th International Conference on Modelling, Monitoring and Management of Air Pollution. July 1–3., Segovia, Spain. WIT Press, Southampton, UK, 2002, pp. 341–350.
  15. Androhanov, V.A., Ovsyannikova, S.V., Kurachev, V.M. (2000). Tehnozemyi: svoystva, rezhimyi, funktsionirovanie [Tehnozemy: properties, modes of functioning]. Novosibirsk, Science, Sibirskaya izdatelskaya firma RAN, 200 p.
  16. Bekarevych, M.O., Masyuk, M.T. (1975). Tekhnohenni ekosystemy ta osnovni napryamky yikh optymizatsiyi [Man-made ecosystems and the basic directions of their optimization]. Bioheotsenolohichni doslidzhennya na Ukrayini. Tezy dop. resp. narady AN URSR [Biogeocenological research in Ukraine. Theses. Rep. the meeting of Ukrainian Academy of Science]. L'viv, pp. 166–167.
  17. Maslikova, K. P. (2017). Ekolohichna struktura roslynnoho pokryvu tekhnozemiv Nikopol'skoho marhantsevorudnoho baseynu [Vegetation ecological structure of Nikopol manganese ore basin replantosems]. Visnyk Dnipropetrovs'koho derzhavnoho ahrarno-ekonomichnoho universytetu [News of Dnipropetrovsk State Agrarian and Economic University], no. 4 (46), pp. 77–88.
  18. Didukh, Ya.P. (2012). Osnovy bioindykatsiyi [The basics of bioindication]. Kyiv, Scientific thought, 344 p.
  19. Austin, M.P. Non-linear species response models in ordination. Vegetatio. 1976, Vol. 33, pp. 33–41.
  20. Austin, M.P. Vegetation and Environment: Discontinuities and Continuities. Vegetation Ecology, Second Edition. Eddy van der Maarel and Janet Franklin. John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. 2013, pp. 52–84.
  21. Austin, M.P., Nicholls, A.O., Margules, C.R. Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecol. Monogr. 1990, Vol. 60, pp. 161–177.
  22. Didukh, Ya.P. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv, Phytosociocentre, 2011.
  23. Landolt, E. Okologische Zeigerwerts zur Schweizer Flora. Veroff. Geobot. Inst. ETH. Zurich. 1977, no. 64, pp. 1–208.
  24. Ellenberg, H. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta geobotanica. Göttingen. 1974, Vol. 9, 197 p.
  25. Ellenberg, H., Weber, H.E., Dull, R., Wirth, V., Werner, W., Paulissen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica. 1992, no. 18, 358 p.
  26. Buzuk, G.N. Phytoindication with ecological scales and regression analysis, environmental index. Bulletin of Pharmacy. 2017, Vol. 2(76), pp. 31–37.
  27. Ter Braak, C. J. F. Canonical correspondence analysis, A new eigenvector technique for multivariate direct gradient analysis. Ecology. 1986, Vol. 67, pp. 1167–1179.
  28. Ter Braak, C. J. F., Gremmen, N. J. M. Ecological amplitudes of plant species and the internal consistency of Ellenberg's indicator values for moisture. Vegetatio. 1987, Vol. 69, pp. 79–87.
  29. Ter Braak, C.J.F., Looman, C.W.N. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio. 1986, Vol. 65, pp. 3–11.
  30. Negadi, M., Hassani, A., Ait Hammou, M., Dahmani, W., Miara, M.D., Kharytonov, M., Zhukov, O. Diversity of Diatom epilithons and quality of water from the subbasin of Oued Mina (district of Tiaret, Algeria). Ukrainian Journal of Ecology. 2018, Vol. 8(1), pp. 103–117. Retrieved from: DOI: 10.15421/2017_194
  31. Zhukov, O., Kunah, O., Dubinina, Y., Ganga, D., Zadorozhnaya, G. Phylogenetic diversity of plant metacommunity of the Dnieper river arena terrace within the ‘"Dnieper-Orilskiy’" nature reserve. Ekológia (Bratislava). 2017, Vol. 36 (4), pp. 352–365. Retrieved from: DOI:10.1515/eko-2017-0028
  32. Smart, S.M., Scott, W.A. Bias in Ellenberg indicator values – problems with detection of the effect of vegetation type. Journal of Vegetation Science. 2004, Vol. 15, pp. 843–846.
  33. Wamelink, G.W.W., Joosten, V., van Dobben, H.F., Berendse F. Validity of Ellenberg indicator values judged from physico-chemical field measurements. J. Veg. Sci. 2002, Vol. 13, pp. 269–278.
  34. Otýpková, Z. The influence of sample plot size on evaluations with Ellenberg indicator values. Biologia. 2009, Vol. 64(6), pp. 1123–1128.
  35. Zhukov, O.V., Kunah, O. M., Dubinina, Y.Y. Sensitivity and resistance of communities, evaluation on the example of the influence of edaphic, vegetation and spatial factors on soil macrofauna. Biosystems Diversity. 2017, Vol. 25(4), pp. 328–341. Retrieved from: DOI:10.15421/011750
  36. Zhukov, A., Zadorozhnaya, G. Spatial heterogeneity of mechanical hardness of replantozems. Principles of ecology. 2017, Vol. 6 (3), pp. 66‒80. Retrieved from: DOI: 10.15393/j1.art.2017.6322
  37. Ewald, J. The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés. Basic Appl Ecol. 2003, Vol. 4(6), pp. 507–513.
  38. Rosenzweig, M.L. Species Diversity in Space and Time. Cambridge, UK, Cambridge University Press. 1995, 386 p.
  39. Szymura, T. H., Szymura, M., Macioł, A. Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests. Ecological Indicators. 2014, Vol. 46, pp. 495–503. Retrieved from: DOI: 10.1016/j.ecolind.2014.07.013
  40. Zhukov, O.V., Kunah, O. M., Dubinina, Y.Y., Ganzha, D. S. Diversity and phytoindication ability of plant community. Ukrainian Journal of Ecology. 2017, Vol. 7(4), pp. 81–99.
  41. Zelený, D., Schaffers, A. P. Too good to be true, pitfalls of using mean Ellenberg indicator values in vegetation analyses. J. Veg. Sci. 2012, Vol. 23(3), pp. 419–431.
  42. Zhukov, O.V., Potapenko, O.V. Environmental impact assessment of distribution substations, the case of phytoindication. Ukrainian Journal of Ecology. 2016, Vol. 7(1), pp. 5–21.

 

Download this article: 
AttachmentSize
PDF icon maslikova-agro-1-2018-115-128.pdf1.95 MB