You are here

Soil biological activity in sugar beet crops depending on various combinations of agrotechnology elements

Soil biological activity in sugar beet crops was determined depending on various combinations of agrotechnology elements. Field research were conducted in two types of agrobiocenoses (grain-row crop rotation and fruit-changing crop rotation) under different fertilization systems (mineral, organic, organic-mineral). A comparison was made between the effects of two soil tillage methods for growing sugar beets (plowing to a depth of 30-35 cm with a «PLN-5-35» plow and a soil tillage loosening and separating machine «Dokuchaev» PRSM-5 to a depth of 12-15 cm without soil turnover) on soil biological activity (cellulose-decomposing capacity of the soil), root yield, and sugar harvest. The influence of different soil tillage methods for sugar beets under various fertilization systems in grain-row and crop rotation on the cellulose-decomposing capacity of the soil (in different soil layers over time), root yield, and sugar harvest was studied. Soil biological activity indicators after 60 days of cotton fabric exposure significantly depend on the sugar beet plant nutrition system and cotton fabric localization by soil layer depth. The maximum increase of soil microorganisms’ activity is observed with the mineral fertilizer system (2.3-2.7 times depending on the depth). On the 90th day of exposure high soil biological activity is provided by the organic fertilization system (an increase of 2.0-2.2 times compared to 1.1-1.5 times for other fertilization systems). On the 120th day of exposure under the mineral fertilization system soil biological activity increased by 1.6-1.7 times in the soil layers and by 1.4 times under the organic system. In grain-row crop rotation an increase in soil biological activity was noted with the «PRSM-5» stratifier. The maximum index value was observed under the organic-mineral fertilization system (76.2-86.5 % on the 120th day of exposure). In terms of the effect on sugar beet yield no significant differences in the effectiveness of the stratifier using under different fertilization systems and in different rotation types were identified.

Key words: stratifier, fertilization systems, soil tillage, crop rotation, soil cellulose-decomposing soil capacity.

 

Reference: 
1. Stecyshyn, P.O. (2008). Osnovy orhanichnoho vyrobnytstva [Basics of organic production]. Vinnytsia, New book, 528 p.
2. Volkogon, V.V., Nadkernychna, O.V., Kovalevska, T.M. (2006). Mikrobni preparaty u zemlerobstvi [Microbial preparations in agriculture]. Teoriia i praktyka: monographia [Theory and practice]. Kyiv, Agrarian science, 311 p.
3. Perucci, P., Bonciarelli, U., Santilocchi, R., Bianchi, A.A. (1997). Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biology and Fertility of Soils. no. 24(3), pp. 311–316. DOI: 10.1007/s003740050249.
4. Bielińska, E.J., Futa, B., Mocek-Płóciniak, A. (2014). Soil enzymes as bioindicators of soil quality and health: scientific monograph. Lublin, Wydawnictwo Libropolis.
5. Masilionytė, L., Kriaučiūnienė, Z., Šarauskis, E., Arlauskienė, A., Krikštolaitis, R., Šlepetienė, A., van Lier, Q.D.J. (2021). Effect of long-term crop rotation and fertilisation management on soil humus dynamics in organic and sustainable agricultural management systems. Soil Research. no. 59(6), pp. 573–585. DOI: 10.1071/SR20101.
6. Jezierska-Tys, S., Wesołowska, S., Gałązka, A., Joniec, J., Bednarz, J., Cierpiała, R. (2020). Biological activity and functional diversity in soil in different cultivation systems. International Journal of Environmental Science and Technology. no. 17, pp. 4189–4204. DOI: 10.1007/s13762-020-02762-5.
7. dos Reis, Ferreira, C., da Silva Neto, E.C., Pereira, M.G., do Nascimento Guedes, J., Rosset, J.S., dos Anjos, L.H.C. (2020). Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil and Tillage Research. no. 198, 104533. DOI: 10.1016/j.still.2019.104533.
8. Singh, T.B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., Dantu, P.K. (2020). Role of organic fertilizers in improving soil fertility. Contaminants in Agriculture: Sources, Impacts and Management. pp. 61–77. DOI: 10.1007/978-3-030- 41552-5_3.
9. Sofo, A., Mininni, A.N., Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy. no. 10(4), 456 p. DOI: 10.3390/agronomy10040456.
10. Gao, M., Dong, Y., Zhang, Z., Song, Z. (2020). Effect of dibutyl phthalate on microbial function diversity and enzyme activity in wheat rhizosphere and non-rhizosphere soils. Environmental Pollution. no. 265, 114800. DOI: 10.1016/j.envpol.2020.114800.
11. Gałązka, A., Niedźwiecki, J., Grządziel, J., Gawryjołek, K. (2020). Evaluation of changes in Glomalin-Related Soil Proteins (GRSP) content, microbial diversity and physical properties depending on the type of soil as the important biotic determinants of soil quality. Agronomy. no 10(9), 1279 p. DOI: 10.3390/agronomy10091279.
12. Lodygin, E., Shamrikova, E., Kubik, O., Chebotarev, N., Abakumov, E. (2023). The Role of Organic and Mineral Fertilization in Maintaining Fertility and Productivity of Cryolithozone Soils. Agronomy. no. 13(5), 1384 p. DOI: 10.3390/agronomy13051384.
13. Puzniak, O., Hrynchyshyn, N., Datsko, T., Andruszczak, S., Hulko, B. (2022). Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine. Agriculture-Basel. no. 12(11), Article 1955. DOI: 10.3390/agriculture12111955.
14. Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I. (2022). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology. no. 60(4), pp. 579–598. DOI: 10.1007/ s13213-010-0117-1.
15. Głowacki, A., Mocek-Płóciniak, A., Spychalski, W., Kayzer, D. (2020). The influence of long-term land reclamation on the microbiological properties of post-mining soils. Soil Science Annual. no. 71(4), pp. 359–370. DOI: 10.37501/soilsa/127227.
16. Chen, Q., Xin, Y., Liu, Z. (2020). LongTerm Fertilization with Potassium Modifies Soil Biological Quality in K-Rich Soils. Agronomy. no. 10, 771 p. DOI: 10.3390/agronomy10060771.
17. Gilewska, M., Płóciniczak, A. (2004). Aktywnosc enzymatyczna gleb powstajacych z gruntów pogórniczych (Enzymatic activity of soils originating from post-mining soils). Roczniki Gleboznawcze – Soil Science Annual. no. 55(2), pp. 123–129.
18. Bielińska, E.J., Mocek-Płóciniak, A. (2009). Fosfatazy w środowisku glebowym (Phosphatases in the soil environment). Scientific Monograph. Poznań, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu.
19. Bielińska, E.J., Węgorek, T., Głowacka, A. (2000). Zmiany aktywności enzymatycznej utworów ilastych na zalesionym zwałowisku kopalni siarki (Changes in the enzymatic activity of clay formations in an afforested sulphur mine spoil tip). Roczniki Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu. no. 317(56), pp. 401–410.
20. Mocek-Płóciniak, A. (2018). Właściwości fizyczno-chemiczne oraz mikrobiologiczne gleb kształtujących się na składowisku popiołów i żużli elektrownianych (The physicochemical and microbiological properties of soils developing in landfills with ash and slag from power plants). Poznań, Uniwersytet Przyrodniczy w Poznaniu, Rozprawy Naukowe, no. 499, 180 p.
21. Wolińska, A., Bennicelli, R.P. (2010). Dehydrogenase activity response to soil reoxidation process described as varied conditions of water potential, air porosity and oxygen. Polish Journal of Environmental Studies. no. 19(3), 651 p.
22. Zhang, L., Zhije, W.U., Chen, L., Jiang, Y., Dongpo, L.I. (2009). Kinetics of catalase and dehydrogenase in main soils of Northeast China under different soil moisture conditions. Agricultural Journal. no. 4(2), 113 p.
23. Finlay, B.J., Esteban, G.F. (2009). Oxygen sensing drives predictable migrations on a microbial community. Environmental Microbiology. no. 11(1), 81 p.
24. Jezierska-Tys, S., Rachoń, L., Rutkowska, A., Szumiło, G. (2011). Microbial activity in soil under winter wheat. International Agrophysics. no. 25, pp. 21–29.
25. Costantini, E.A., Mocali, S. (2022). Soil health, soil genetic horizons and biodiversity. Journal of Plant Nutrition and Soil Science. no. 185(1), pp. 24–34. DOI: 10.1002/jpln.202100437.
26. Grandy, A.S., Daly, A.B., Bowles, T.M., Gaudin, A.C., Jilling, A., Leptin, A., Waterhouse, H. (2022). The nitrogen gap in soil health concepts and fertility measurements. Soil Biology and Biochemistry. no. 175, 108856. DOI: 10.1016/j.soilbio.2022.10885.
27. Wołejko, E., Jabłońska-Trypuć, A., Wydro, U., Butarewicz, A., Łozowicka, B. (2020). Soil biological activity as an indicator of soil pollution with pesticides–a review. Applied Soil Ecology. no. 147, 103356. DOI: 10.1016/j.apsoil.2019.09.006.
28. Feng, Q., An, C., Chen, Z., Wang, Z. (2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable and Sustainable Energy Reviews. no. 133, 110293. DOI: 10.1016/j.rser.2020.110293.
29. Swedrzynska, D., Grzes, S. (2015). Microbiological Parameters of Soil under Sugar Beet as a Response to the Long-Term Application of Different Tillage Systems. Polish Journal of Environmental Studies. no. 24(1), pp. 285–294. DOI: 10.15244/pjoes/25102.
30. Hartmann, M., Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment. no. 4(1), pp. 4–18. DOI: 10.1038/s43017-022-00366-w.
31. Hanhur, V.V., Len, O.I., Hanhur, N.V. (2022). Impact of different tillage systems on soil nutrient regime in the field of winter wheat and spring barley in the left-bank forest-steppe zone of Ukraine. Bulletin of Poltava State Agrarian Academy. no. (1), pp. 38–44. DOI: 10.31210/visnyk2022.01.04.
32. Klikocka, H., Narolski, B., Klikocka, O., Głowacka, A., Juszczak, D., Onuch, J., Gaj, R., Michałkiewicz, G., Cybulska, M., Stepaniuk, S. (2012). The Effect of Soil Tillage and Nitrogen Fertilization on Microbiological Parameters of Soil on which Spring Triticale is Grown. Polish Journal of Environmental Studies. no. 21(6), pp. 1675–1685.
33. Pashchenko, V.F., Syromyatnikov, Y.N. (2019). The transporting ability of the rotor of the soil-cultivating loosening and separating vehicle. Tractors and Agricultural Machinery. no. 86(2), pp. 67–74. DOI: 10.31992/0321-4443-2019-2-67-74.
34. Syromyatnikov, Y. (2019). Design parameters of the rotor of a tilling and separating machine. Agriculture. no. 2, pp. 7–27. DOI: 10.7256/2453-8809.2019.2.31975.
35. Rozhkov, A.O., Puzik, V.K., Kalenska, S.M. (2016). Doslidna sprava v agronomii: navch. posibnyk [Research case in agronomy: teaching. manual]. Teoretychni aspekty doslidnoi spravy [Theoretical aspects of the research case]. Kharkiv, Maidan, 316 p.
 
Download this article: 
AttachmentSize
PDF icon syromuatnikov_2_2024.pdf509.63 KB