You are here

Sex structure of hemp convergent hybrids

Inbreeding and its extreme form (self-pollination) are an effective method for stabilizing the monoecious traits of industrial hemp. The hybrids with self-pollinated lines as the components of which, in most cases, were characterized by a better sex composition than the output cultivar forms, and the absence of male plants. The number of monoecious feminized plant (the main sexual type of modern varieties) in hybrids created as a result of crossing in the directions of vertical convergence was from 54.2 to 100.0 %, and in hybrids created by crossing in horizontal convergence it was from 37.7 to 100.0 %. The use of hybridization in the directions of vertical and horizontal convergence is advisable in the breeding of industrial hemp, especially for obtaining a starting material with a stable trait of monoecious, with high plant biomass, fber content and seed productivity. We recommend the following crosses: the frst and third generations of simple linear-varietal hybrids of various ecological-geographical types, related to one of the parental forms (F1 × F3) (i); crossing of simple interlinear hybrids of various ecological-geographical types with an inbred line of the Central European type of a later generation from self-pollination (interline hybrid × self-pollinated line) (ii); reciprocal crosses of simple interlinear hybrids of various ecological-geographical types with the original cultivar of a self-pollinated line of the middle European type (interline hybrid × cultivar and cultivar × interline hybrid) (iii); crossing of simple linear-varietal and intervarietal hybrids of the frst generation, related in one of the parental forms (iiii). The consistent use of crossbreeding, inbreeding (or divergence), hybridization (or crossing in the vertical and horizontal convergence directions) has created heterotic hemp forms with stable productive potential, homogeneous sex structure, and non-psychotropic properties. The created variety ‘Aurora’ is an example of an innovative breeding method.

Key words: hemp, breeding, sex, monoecious, crossbreeding, inbreeding, divergence, convergence, hybrid, productivity.

 

Reference: 
1. Salentijn, E.M.J., Zhang, Q., Amaducci, S., Yang, M., Trindade, L.M. (2015). New developments in fber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products. Vol. 68, pp. 32–41. Available at: https://doi.org/10.1016/j. indcrop.2014.08.011
2. Burczyk, H., Kowalski, M., Plawuszewski, M. (2005). Trends and methods in hemp breeding in Poland. Journal of Natural Fibers. Vol. 2, no. 1, pp. 25–33. Available at: https:// doi. org/10.1300/J395v02n01_03
3. Zwenger, S.R. (2014). The biotechnology of Cannabis sativa. 249 p.
4. Faux, A., Draye, X., Flamand, M., Occre, A., Bertin, P. (2016). Identifcation of QTLs for sex expression in dioecious and momoecious hemp (Cannabis sativa L.). Euphytica. Vol. 209, pp. 357–376. Available at: https://doi.org/10.1007/ s10681-016-1641-2
5. Rodd, J., In-Chol, K., Saal, B., Flachowsky, H., Kriese, U., Weber, W.E. (2005). Sex-linked SSR markers in hemp. Plant Breeding. Vol. 124, no. 2, pp. 167–170. Available at: https://doi.org/10.1111/j.1439-0523.2005.01079.x
6. van Bakel, H., Stout, J.M., Cote, A G., Tallon, C.M., Sharpe, A.G., Hughes, T.R., Page, J.E. (2011). The draft genome and transcriptome of Cannabis sativa. Genome Biology. Vol. 12, r102. Available at: https://doi.org/10.1186/ gb-2011-12-10-r102
7. Punja, Z.K., Rodriguez, G., Chen, S. (2017). Assessing genetic diversity in Cannabis sativa using molecular approaches. In Chandra S. et al. (eds.). Cannabis sativa L. – Botany and Biotechnology. Cham. pp. 395–418. Available at: https://doi.org/10.1007/978-3-319-54564-6_19
8. Brian, C., Dong, Z., McKay, J.K. (2019). Hemp genetics and genomics. In Williams D.W. (ed.). Industrial Hemp as a Modern Commodity Crop. Madison. pp. 94–108. Available at: https://doi.org/10.2134/industrialhemp.c6
9. Toth, J.A., Stack, G.M., Cala, A.R., Carlson, C.H., Wilk, R.L., Crawford, J.L., Viands, D.R., Philippe, G., Smart, C.D., Rose, J.K.C., Smart, L.B. (2020). Development and validation of genetic markers for sex and cannabinoid chemotype in Cannabis sativa L. GCB Bioenergy. Vol. 12, no. 3, pp. 213– 222. Available at: https://doi.org/10.1111/gcbb.12667
10. Shi, G., Cai, Q. (2009). Cadmium tolerance and accumulation in eight potential energy crops. Biotechnology Advances. Vol. 27, no. 5, pp. 555–561.
11. Husain, R., Weeden, H., Bogush, D., Deguchi, M., Soliman, M., Potlakayala, S., Katam, R., Goldman, S., Rudrabhatla, S. (2019). Enhancedtolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS ONE. Vol. 14, no. 8, e0221570, pp. 1–14. Available at: https://doi. org/10.1371/journal.pone.0221570
12. Adamovics, A.M., Ivanovs, S.A., Dubrovskis, V.S. (2019). Methane production from industrial hemp. Agricultural Machinery and Technologies. Vol. 13, no. 2, pp. 20–26. Available at: https://doi.org/10.22314/2073-7599- 2018-13-2-20-26
13. Asquer, C., Melis, E., Scano, E.A., Carboni, G. (2019). Opportunities for green energy through emerging crops: biogas valorization of Cannabis sativa L. residues. Climate. Vol. 7, no. 12, 142, pp. 1–20. Available at: https:// doi.org/10.3390/cli7120142
14. Kraszkiewicz, A, Kachel, M, Parafniuk, S., Zając, G., Niedziółka, I., Sprawka, M. (2019). Assessment of the possibility of using hemp biomass (Cannabis sativa L.) for energy purposes: a case study. Applied Sciences. Vol. 9, 4437, pp. 1–12. Available at: https://doi.org/10.3390/app9204437
15. Rehman, M.S.U., Saif, A., Mahmood, T., Han, J-I. (2013). Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renewable and Sustainable Energy Reviews. Vol. 18, pp. 154–164. Available at: https://doi.org/10.1016/j.rser.2012.10.019
16. Schultz, C.J., Lim, W.L., Khor, L.S., Neumann, K.A., Schultz, J.M., Ansari, O., Skewesf, M.A., Burton, R.A. (2020). Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. Journal of Agriculture and Food Research. Vol. 2, 100025, pp. 1–13. Available at: https://doi. org/10.1016/j.jafr.2020.100025
17. Rong, C., Lee, Y., Carmona, N.E., Cha, D.S., Ragguett, R-M., Rosenblat, J.D., Mansur, R.B., Ho, R.C., McIntyre, R.S. (2017). Cannabidiol in medical marijuana: Research vistas and potential opportunities. Pharmacological Research. Vol. 121, pp. 213–218. Available at: https://doi. org/10.1016/j.phrs.2017.05.005
18. Deiana, S. (2017). Potential medical uses of cannabigerol: a brief overview. InPreedy, V.R. (ed.).Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis, and Treatment. pp. 958–967. Available at: https:// doi.org/10.1016/B978-0-128007563.00115-0
19. Migal, N.D. (1992). Genetika pola konopli [Genetics of sex hemp]. Glukhov, 215 p.
20. Demydov, S.V., Berdyshev, H.D., Topchii, N.M., Chernenko, K.D. (2007). Henetyka [Genetics]. Kyiv, 412 p.
21. Polishchuk, I.B., Polishchuk, V.D. (2007). Formotvorchi procesy u spadkovyh peretvorennjah [Formative processes of genetic transformation]. Visnyk agrarnoi' nauky [Bulletin of Agricultural Science], no. 2, pp. 45–49.
22. Mishchenko, S.V. (2020). Teoretychni i praktychni osnovy vykorystannja inbrydyngu ta gibrydyzacii' v selekcii' konopel': diss. … d-ra agr. nauk [Theoretical and practical basics of using inbreeding and hybridization in hemp breeding. Dr. agr. sci. diss]. Kharkiv, 525 p.

 

Download this article: 
AttachmentSize
PDF icon mishenko_1_2021.pdf505.31 KB