You are here

The regularities of 137Cs accumulation in the aboveand underground parts of aerial-and-aquatic plants originated from various types of reservoirs in the Polissia and the Forest-Steppe of Ukraine

The aim of the study was to establish the regularities of 137Cs accumulation in the above- and underground parts of aerial-and-aquatic plants originated from various types of reservoirs in the Polissia and the Forest-Steppe of Ukraine, located in territories varying in the degrees of radioactive contamination. The studies were carried out in 2014–2018. Higher aquatic plants were sampled in eutrophic, oligotrophic, and dystrophic reservoirs including large and small ones as well as lakes and ponds used for various purposes. The reservoirs were located in the areas that are considered conditionally clean relative to the density of 137Cs contamination, or are classifed as zones of enhanced radiological control, guaranteed voluntary resettlement, unconditional (guaranteed) resettlement and exclusion zones. The objects of research were 8 species of aerial aquatic plants widespread in the fresh water reservoirs of the Polissya and the Forest-Steppe of Ukraine. The specifc content of 137Cs in the aboveground parts, rhizomes, and roots of the plants was determined by common gamma-spectrometric methods. The analysis of the obtained results revealed a common regularity typical of plants from all the studied reservoirs – the levels of 137Cs in the aboveground parts and the rhizomes did not differ signifcantly, but in the ground roots they were signifcantly higher. The specifc activity of 137Cs in ground roots of Phragmites australis exceeded its activity in above ground parts by 6–25 times, in Tupha angustifolia – by 5–20, Glyceria maxima by 7–10, Scirpus lacustris by 4–9, Alisma plantago-aquatica – by 3 times, Sagittaria saggitifolia - by 2, Butomus umbellatus – by 3, Iris pseudacorus - by 4 times. The levels of 137Cs content in aboveground parts and rhizomes in most of the studied plants did not differ signifcantly. The results of the study will further make it possible to assess the role of aerial-and-aquatic plants in the bottom sediments radioactive contamination and to improve the understanding of the role of higher aquatic plants in the processes of radioactive elements migration and redistribution in aquatic ecosystems. The revealed regularities of 137Cs levels formation in the underground parts of plants should be taken into account in determining the radiation dose of plants growing in radionuclides contaminated reservoirs.

Key words: aerial-and-aquatic plants, aboveground parts, underground parts, roots, rhizomes, 137Cs, reservoirs, lakes, ponds.

 

Reference: 
1. Volkova, O.M. (2008). Tehnogenni radionuklidy u gidrobiontah vodojm riznogo typu: dys. … d-ra biol. nauk: 03.00.17 [Man-caused radionuclides in aquatic organisms of reservoirs of different types: dis. Dr. Biol. Science: 03.00.17]. Kyiv, Institute of Hydrobiology of the National Academy of Sciences of Ukraine, 348 p.
2. Marej, A.N. (1976). Sanitarnaja ohrana vodoemov ot zagrjaznenij radioaktivnymi veshhestvami [Sanitary protection of water bodies from radioactive contamination]. Moscow, Atomizdat, 224 p.
3. Kuz'menko, M.I., Romanenko, V.D., Derevec', V.V., Volkova, O.M. (2001). Radionuklidy u vodnyh ekosystemah Ukrai'ny [Radionuclides in aquatic ecosystems of Ukraine]. Kyiv, Chornobylinterinform, 318 p.
4. Lukina, L.F., Smirnova, N.N. (1988). Fiziologija vysshih vodnyh rastenij [Physiology of higher aquatic plants]. Kyiv, Scientifc thought, 188 p.
5. 25 rokiv Chornobyl's'koi' katastrofy [25 years of the Chernobyl disaster]. Bezpeka majbutn'ogo: nacional'na dopovid' Ukrai'ny [Security of the future: a national report of Ukraine]. Kyiv, KIM, 2011, 356 p.
6. Gudkova, D.I., Shevtsova, N.L., Pomortseva, N.A., Dzyubenko, E.V., Kaglyana, A.E., Nazarov, A.B. (2016). Radiation-induced cytogenetic and hematologic effects on aquatic biota within the Chernobyl exclusion zone. Journal Environ. Radioactivity. 151(2), 438 p.
7. Kuz'menko, M.I., Gudkov, D.I., Kirjejev, S.I., Beljajev, V.V., Volkova, O.M., Klenus, V.G., Kagljan, O.Je., Shevcova, N.L., Shyroka, Z.O., Nasvit, O.I., Nazarov, O.B., Dzjubenko, O.V., Zarubin, O.L., Jurchuk, L.P., Karapysh, V.A., Mardarevych, M.G. (2010). Tehnogenni radionuklidy u prisnovodnyh ekosystemah [Man-made radionuclides in freshwater ecosystems]. Kyiv, Scientifc thought, 262 p.
8. Trapeznykov, A.V., Trapeznykova, V.N., Korzhavyn, A.V., Nykolkyn, V.N. (2019). Radiojekologicheskij monitoring presnovodnyh jekosistem [Radioecological monitoring of freshwater ecosystems]. In-t jekologii rastenij i zhivotnyh [Institute of Plant and Animal Ecology]. Ekaterinburg, AkademNauka, Vol. 4, 447 p.
9. Trapeznikov, A.V., Trapeznikova, V.N., Korzhavin, A.V. (2015). Dinamika radiojekologicheskogo sostojanija presnovodnyh jekosistem, podverzhennyh mnogoletnemu vozdejstviju atomnoj jelektrostancii v granicah nabljudaemoj zony [Dynamics of the radioecological state of freshwater ecosystems subject to long-term effects of a nuclear power plant within the observed zone]. Radiacionnaja biologija. Radiojekologija [Radiation biology. Radioecology]. Vol. 55, no. 3, pp. 302–313. Available at: https://doi.org/10.7868/S0869803115020150.
10. Gudkov, D.I., Protasov, A.A., Shherbak, V.I., D'jachenko, T.N., Kagljan, A.E., Silaeva, A.A., Pashkova, O.V. (2015). Sovremennoe gidrobiologicheskoe i radiojekologicheskoe sostojanie vodoema-ohladitelja Chernobyl'skoj AjeS: dopovidi Nacional'noi' akademii' nauk Ukrai'ni [The current hydrobiological and radioecological state of the cooling pond of the Chernobyl nuclear power plant: additional fndings of the National Academy of Sciences of Ukraine], no. 1, pp. 173–179. Available at: https://doi.org/10.15407/dopovidi2015.01.173
11. Ganzha, Ch., Gudkova, D., Ganzhab, D., Klenusa, V., Nazarovc, A. (2013). Physicochemical forms of (90) Sr and (137)Cs in components of Glyboke Lake ecosystem in the Chornobyl exclusion zone. Journal of Environmental Radioactivity. 127, pp. 176–181. Available at: https://doi. org/10.1016/j.jenvrad.2013.03.013
12. Romanenko, V.D., Kuz'menko, M.Y., Evtushenko, N.Ju. (1992). Radioaktivnoe i himicheskoe zagrjaznenie Dnepra i ego vodohranilishh posle avarii na chernobyl'skoj AjeS [Radioactive and chemical contamination of the Dnieper and its reservoirs after the accident at the Chernobyl nuclear power plant]. Kyiv, Scientifc thought, 194 p.
13. Ganzha, Ch.D., Gudkov, D.I., Ganzha, D.D., Nazarov, A.B. (2020). Accumulation and distribution of radionuclides in higher ajauatic plants during the vegetation period. Journal of Environmental Radioactivity. Available at: https://doi.org/10.1016/j.jenvrad.2020.106361
14. Pavljutin, A.P., Babucki,j V.A. (1996). Vysshaja vodnaja rastitel'nost' v ozere, zagrjaznennom radionuklidami: sostav, raspredelenie, zapasy i nakoplenie cezija-137 [Higher aquatic vegetation in a lake contaminated with radionuclides: composition, distribution, stocks and accumulation of cesium-137]. Gidrobiol. zhurn. [Hydrobiological Journal]. Vol. 32, no. 4, pp. 79–86.
15. Shevtsova, N.L.,. Gudkov, D.I. (2013). Cytogenetic damages in the common reed Phragmites australis in the shhater bodies of the Chornobyl ehclusion zone. Hydrobiological Journal. 49 (2), 85 p. Available at: https:// doi.org/10.1615/HydrobJ.v49.i2.80 16. Shevtsova, N.L., Javniuk, A.A., Gudkov, D.I. (2014). Effect of rest period on germination of the common reed seeds from the shhater bodies of the Chornobyl ehclusion zone. Hydrobiological Journal, 50 (5), 78 p.
17. Gudkov, D., Shevtsova, N., Pomortseva, N., Dzyubenko, E. (2017). Ajauatic Plants and Animals in the Chernobyl Ehclusion Zone: Effects of Long-Term Radiation Ehposure on Different Levels of Biological Organization. Genetics, Evolution and Radiation. 287 p. Available at: https://doi.org/10.1007/978-3-319-48838-7_24
18. Gudkov, I.M. (2016). Radiobiologija [Radiobiology]. Kherson, OLDY-PLJuS, 504 p.
19. Grynzhevs'kyj, M.V. (1998). Akvakul'tura Ukrai'ny (organizacijno-ekonomichni aspekty) [Aquaculture of Ukraine (organizational and economic aspects)]. Lviv, Free Ukraine, 365 p.
20. Mihjejev, O.M., Madzhd, S.M., Lapan', O.V., Kulynych, Ja.I. (2018). Vykorystannja gidroftnyh system dlja vidnovlennja jakosti zabrudnennja zabrudnenyh vod [Use of hydrophytic systems to restore the quality of polluted water pollution]. Kyiv, Center for Educational Literature, 171 p.
21. Ostroumov, S.A. (2005). O samoochishhenii vodnyh jekosistem. Antropogennoe vlijanie na vodnye jekosistemy: materialy konferencii, posvjashhennoj 100-letiju so dnja rozhdenija N.S. Stroganova: sbornik statej [On self-purifcation of aquatic ecosystems. Anthropogenic Influence on Aquatic Ecosystems: proceedings of the conference dedicated to the 100th anniversary of the birth of N.S. Stroganov: collection of articles]. Moscow, KMK Scientifc Publishing Partnership, pp. 94–119.
22. Tomilin, Ju.A. (2007). Radionuklidy v komponentah vodnyh ekosystem pivdennogo regionu Ukrai'ny: migracija, rozpodil, nakopychennja i kontrzahody: avtoref. dys. … d-ra byol. nauk: 03.00.01 [Radionuclides in components of aquatic ecosystems of the southern region of Ukraine: migration, distribution, accumulation and countermeasures: author's ref. dis. Dr. Biol. Science: 03.00.01]. Mykolaiv, Petro Mohyla Moscow State University Publishing House, 40 p.
23. Sirenko, L.A., Koreljava, I.A., Mihajlenko, L.E. (1989). Rastitel'nost' i bakterial'noe naselenie Dnepra i ego vodohranilishh [Vegetation and bacterial population of the Dnieper and its reservoirs]. Kyiv, Scientifc thought, 232 p.
 
Download this article: 
AttachmentSize
PDF icon volkova_1_2021.pdf446.22 KB