1. Deb, C.R., Rout, G.R., Mao, A.A., Nandi, S.K., Nilasana Singha, R.K., Vijayan, D., Langhu, T., Kikon, Z.P., Pradhan, S., Tariq, M., Swain, D. (2018). In vitro Propagation of Some Threatened Plant Species of India. Current Science. Vol. 114, no. 03, 567 p. DOI: 10.18520/cs/v114/i03/567-575.
2. Ghareb, H.E.-S., Ibrahim, S.D., Hegazi, G.A.E.-M. (2020). In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate. Journal of Genetic Engineering and Biotechnology. Vol. 18, no. 1, 41 p. DOI: 10.1186/s43141-020-00052-8.
3. Kumar, M., Chaudhary, V., Sirohi, U., Singh, J., Yadav, M.K., Prakash, S., Kumar, A., Kumar, V., Pal, V., Chauhan, C., Kaushik, K., Shukla, D., Motla, R., Kumar, S., Malik, S. (2024). In vitro Propagation Journey of Ornamental Gladiolus (Gladiolus Species): A Systematic Review Analysis Based on More Than 50 Years Research. Horticulturae. Vol. 10, no. 2, 148 p. DOI: 10.3390/horticulturae10020148.
4. Hasnain, A., Naqvi, S.A.H., Ayesha, S.I., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M.Z., Abbas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M., Hasan, M.E., Abdelhamid, M.M.A. (2022). Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science. Vol. 13, 21 p. DOI: 10.3389/ fpls.2022.1009395.
5. Chmielarz, P., Kotlarski, S., Kalemba, E.M., Martins, J.P.R., Michalak, M. (2023). Successful In vitro Shoot Multiplication of Quercus robur L. Trees Aged up to 800 Years. Plants. Vol. 12, no. 12, 2230 p. DOI: 10.3390/plants12122230.
6. Al-Ahmad, H. (2020). In vitro Decoated Seed Germination and Seedling Development for Propagation of Wild Mandrake (Mandragora autumnalis Bertol.). Plants. Vol. 9, no. 10, 1339 p. DOI: 10.3390/ plants9101339.
7. Tomar, U., Neg, U., Sinha, A.K., Dantu, P. (2008). An Overview of the Economic Factors Influencing Micropropagation. My Forest. Available at:
https://www.researchgate.net/publication/236149384_ An_Overview_of_the_Economic_Factors_Influencing_Micropropagation.
8. Matskevych, V.V. (2021) Mikroklonalne rozmnozhennia vydiv roslyn in vitro ta yikh postaseptychna adaptatsiia [Microclonal propagation of plant species in vitro and their post-septic adaptation]. Sumy, 402 p. Available at:
https://science.snau.edu.ua/wp-content/ uploads/2021/01/dis_matckevit_compressed-1-190.pdf.
9. Chen, J., Henny, R.J. (2015). Commercial Production of Ornamental Tropical Foliage Plants: Micropropagation: ENH1259/EP520, 5/2015. EDIS. Vol. 2015, no. 5, 4 p. DOI: 10.32473/edis-ep520-2015.
10. Murthy, H.N., Joseph, K.S., Paek, K.Y., Park, S.Y. (2023). Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science. Vol. 14, 17 p. DOI: 10.3389/fpls.2023.1159588.
11. Chawla, H.S. (2009). Introduction to plant biotechnology. Third edition. Enfield, NH Jersey Plymouth, Science Publishers, 698 p.
12. Kitto, S.L. (1997). Commercial Micropropagation. HortScience. Vol. 32, no. 6, pp. 1012–1014. DOI: 10.21273/HORTSCI.32.6.1012.
13. Abdalla, N., El-Ramady, H., Seliem, M.K., El-Mahrouk, M.E., Taha, N., Bayoumi, Y., Shalaby, T.A., Dobránszki, J. (2022). An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae. Vol. 8, no. 8, 677 p. DOI: 10.3390/horticulturae8080677.
14. Matskevych, V.V., Kravchenko, N.V., Podhaietskyi, A.A., Matskevych, O.V., Shyta, O.P., Hnitetskyi, M.O. (2023) Mikroklonalne rozmnozhennia roslyn [Microclonal propagation of plants]. Sumy, 209 p. Available at:
http://rep.btsau.edu.ua/handle/ BNAU/9275.
15. Raza, A., Ashraf, F., Zou, X., Zhang, X., Tosif, H. (2020). Plant Adaptation and Tolerance to Environmental Stresses: Mechanisms and Perspectives. Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Singapore, Springer Singapore, pp. 117–145. DOI: 10.1007/978- 981-15-2156-0_5.
16. Hryhorchuk, I.V. (2021). Fiziolohiia roslyn (kurs lektsii): navch. posib. [Physiology of plants (course of lectures)]. Kamianets-Podilskyi, «Ruta Printing House» LLC, 194 p. Available at: https:// moodle.znu.edu.ua/pluginfile.php/1298573/mod_resource/content/0/Hryhorchuk-I.D.-Fiziolohiia-roslyn-%28kurs-lektsii%29.pdf. 17. Bhatia, S., Bera, T. (2015). Somatic Embryogenesis and Organogenesis. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. Elsevier, pp. 209–230. DOI: 10.1016/B978-0-12-802221-4.00006-6.
18. Podhaietskyi, A.A., Matskevych, V.V., Podhaietskyi, A.A. (2018). Osoblyvosti mikroklonalnoho rozmnozhennia vydiv roslyn: monohrafiia [Features of microclonal reproduction of plant species]. Bila Tserkva, BNAU, 209 p. Available at:
http://rep. btsau.edu.ua/handle/BNAU/2015.
19. Gaj, M.D. (2004). Factors Influencing Somatic Embryogenesis Induction and Plant Regeneration with Particular Reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation. Vol. 43, no. 1, pp. 27–47. DOI: 10.1023/B:GROW.0000038275.29262.fb.
20. Thorpe, T.A. (2007). History of plant tissue culture. Molecular Biotechnology. Vol. 37, no. 2, pp. 169–180. DOI: 10.1007/s12033-007-0031-3.
21. Rathour, A., Kumar, R. (2023). Plant Propagation Techniques in Horticulture. Recent Trend in Agriculture. New Delhi, pp. 125–140. Available at:
https://www.researchgate.net/publication/3753 42362_Plant_Propagation_Techniques_in_Horticulture.
22. Leifert, C., Cassells, A.C. (2001). Microbial hazards in plant tissue and cell cultures. In vitro Cellular & Developmental Biology – Plant. Vol. 37, no. 2, pp. 133–138. DOI: 10.1007/s11627-001-0025-y.
23. Hailu, A., Sbhatu, D.B., Abraha, H.B. (2020). In vitro Micropropagation of Industrially and Medicinally Useful Plant Aloe trichosantha Berger Using Offshoot Cuttings. The Scientific World Journal. Vol. 2020, pp. 1–7. DOI: 10.1155/2020/3947162.
24. Magyar-Tábori, K., Mendler-Drienyovszki, N., Hanász, A., Zsombik, L., Dobránszki, J. (2021). Phytotoxicity and Other Adverse Effects on the In vitro Shoot Cultures Caused by Virus Elimination Treatments: Reasons and Solutions. Plants. Vol. 10, no. 4, 670 p. DOI: 10.3390/plants10040670.
25. Tesliuk, N.I., Lytvyn, M.L., Hudzenko, T.V. (2023). Optimization of the nutrient medium for the primary stages of common walnut microclonal propagation in vitro. Microbiology & Biotechnology. no. 3(56), pp. 24–33. DOI: 10.18524/2307- 4663.2022.3(56).265806.
26. Krivmane, B., Ruņģe, K.S., Samsone, I., Ruņģis, D.E. (2023). Differentially Expressed Conserved Plant Vegetative Phase-Change-Related microRNAs in Mature and Rejuvenated Silver Birch In vitro Propagated Tissues. Plants. Vol. 12, no. 10, 1993 p. DOI: 10.3390/plants12101993.
27. Ribeiro, I.D.S., Ribeiro, L.M., Soares, J.S., Ramos, J.C.M., Sorgato, J.C. (2022). Light condition, flask sealing, and cultivation time on the germination and initial in vitro development of Dendrobium nobile Lindl. Ornamental Horticulture. Vol. 28, no. 4, pp. 407–413. DOI: 10.1590/2447-536x.v28i4.2515.
28. Gashi, B., Abdullai, K., Sota, V., Kongjika, E. (2015). Micropropagation and in vitro conservation of the rare and threatened plants Ramonda serbica and Ramonda nathaliae. Physiology and Molecular Biology of Plants. Vol. 21, no. 1, pp. 123–136. DOI: 10.1007/s12298-014-0261-3.
30. Torres, K.C. (1989). Stages of Micropropagation. Tissue Culture Techniques for Horticultural Crops. Boston, MA, Springer US, pp. 52–65. DOI: 10.1007/978-1-4615-9756-8_3.
31. Malik, M.Q., Mujib, A., Gulzar, B., Zafar, N., Syeed, R., Mamgain, J., Ejaz, B. (2020). Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L. Journal of Applied Genetics. Vol. 61, no. 1, pp. 25–35. DOI: 10.1007/ s13353-019-00536-5.
32. Pacholczak, A., Nowakowska, K. (2024). Optimizing micropropagation of Miscanthus sinensis “Gold Bar” by shortening the production cycle and reducing acclimation stress through the use of selected growth regulators. Plant Cell, Tissue and Organ Culture (PCTOC). Vol. 159, no. 2, 28 p. DOI: 10.1007/s11240-024-02886-3.
33. Jagiełło-Kubiec, K., Nowakowska, K., Łukaszewska, A.J., Pacholczak, A. (2021). Acclimation to Ex Vitro Conditions in Ninebark. Agronomy. Vol. 11, no. 4, 612 p. DOI: 10.3390/agronomy11040612.
34. Ramos, G.K.S., Lemos, O.F.D., Cunha, E.F.M., Boari, A.D.J., Mendonça, D.P., Dos Santos, L.R.R., Rodrigues, S.D.M., De Menezes, I.C. (2020). Identification and micropropagation of virus-free black pepper genotypes (Piper nigrum L.). Revista Ciência Agrícola. Vol. 18, no. 1, pp. 57–64. DOI: 10.28998/rca.v18i1.7049.
35. Purmale, L., Osvalde, A., Karlsons, A., Ievinsh, G. (2024). Comparison of two subspecies of a halophytic multi-use plant Mertensia maritima in vitro and ex vitro: propagation, salinity tolerance and mineral nutrition. Environmental and Experimental Biology. Vol. 22, no. 1, pp. 29–40. DOI: 10.22364/eeb.22.04.
36. Fan, C., Manivannan, A., Wei, H. (2022). Light Quality-Mediated Influence of Morphogenesis in Micropropagated Horticultural Crops: A Comprehensive Overview. BioMed Research International. Vol. 2022, pp. 1–11. DOI: 10.1155/2022/4615079.
37. Khan, I., Khan, M.A., Shehzad, M.A., Ali, A., Mohammad, S., Ali, H., Alyemeni, M.N., Ahmad, P. (2020). Micropropagation and Production of Health Promoting Lignans in Linum usitatissimum. Plants. Vol. 9, no. 6, 728 p. DOI: 10.3390/plants9060728.
38. Nadal, M.C., Machado, N.B., Santos, C.S.D., Flores, J.H.N., Dória, J., Pasqual, M. (2023). Impact of monochromatic lights on the in vitro development of Cattleya walkeriana and effects on acclimatization. Ornamental Horticulture. Vol. 29, no. 2, pp. 238–248. DOI: 10.1590/2447-536x.v29i2.2610.
39. Mohammed, M., Munir, M., Ghazzawy, H.S. (2022). Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets. Agronomy. Vol. 13, no. 1, 78 p. DOI: 10.3390/agronomy13010078.