You are here

Monitoring of CO2 emission fluxes and organic C balance in limed sod-podzolic soil in winter rapeseed field

Management of carbon sequestration processes is one of the main issues in overcoming soil organic matter degradation in the Polissya zone, especially taking into account climate changes. There is a need to research and develop measures to reduce unproductive losses of CO2 from the soil, which will contribute to the stabilization of the organic carbon content in the soil under intensive agriculture. The goal of the research was to establish the peculiarities of CO2 emission fluxes formation and the balance of organic carbon in sod-podzolic soil on average over the cultivation years of winter rapeseed in short crop rotation at different doses of ameliorants and fertilizers. Research methods: field experiment, laboratory, computational and statistical analysis. According to the research results it was found that during the spring- summer period of cultivation of winter rapeseed cultivation in crop rotation the highest unproductive losses of CO2 from the soil can be traced in the variant without fertilizers. Significant reductions in the average daily emission fluxes of CO2 from the soil and unproductive losses of carbon dioxide were noted with the application of 1.5 doses of CaMg(CO3 )2 against the background of N120P90K120 to 218.5 kg/ha and 3.64 kg/ ha/h, respectively. Improvement of growing conditions in this variant contributes to increased accumulation of CO2 22% in the biomass of winter rapeseed and, accordingly, an increase in the share of crop residues when they are plowed into the soil to 62.8% of the total carbon dioxide emissions into the atmosphere. Taking into account the share of fertilizers and dolomite flour, the share of humus mineralization decreased to 22.6%. It was found that the application of 1.5 doses of CaMg(- CO3 ) 2 against the background of the recommended dose of fertilizer with the incorporation of by-products into the soil stabilizes the organic carbon balance at the level of 0.05 t/ha.

Key words: winter rapeseed, CO2 emissions, chemical reclamation, fertilization, organic carbon balance.

 

Reference: 
1. Butrym, O.V. (2018). Formuvannia finansovo-ekonomichnoho instumentu vnutrishnoho vuhleysevoho rynku u sektori zemlekorustyvannia Ukrainy [Formation of the financial and economic instrument of the internal carbon market in the sector of land use of Ukraine]. Agrosvit, no. 4, pp. 47–52. Available at: http://www.agrosvit.info/?n=4&y=2018
2. Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems. Vol. 6(2), 33 p. DOI: 10.3390/soilsystems6020033
3. Ulko, E.M. (2022). Metodolohichni jsnovy staloho upravlinnia gryntovymy (zemelnymy) recursamy v umovah hlobalnyh zmin klimaty. Hlobalizatsia ta rozvytok innovatsiynyh system: tendentsii, vyklyky, perspectyvy: materily I Mizhnarod. nauk.-practyk. konfer. [Methodological Foundations of Sustainable Management of Soil (Land) Resources in the Context of Global Climate Change. Globalizationand Development of Innovation Systems: Trends, Challenges, Prospects: materials of the I International. Scientific and Practical Conf.]. Kharkiv, pp. 472–474.
4. Halytska, M.A., Pysarenko, P.V., Kulyk, M.A. (2018). Humifikatsiyno-mineralizatsiyni protsesy yak pokaznyk nakopychennya karbonu v obgruntakh [Humification-Mineralization Processes as an Indicator of Carbon Accumulation in Soils]. Tavriyskyy naukovyi visnyk. Silskohospodarski nauky [Tavria Scientific Bulletin. Agricultural Sciences]. Issue 102, pp. 130–136. Available at: https://dspace.ksaeu.kherson.ua/handle/123456789/2470?show=full
5. Tkachuk, V.P., Trofymenko, P.I. (2020). Vmist humusu za riznoho vykorystannya dernovo-pidzolystoho supishchanoho obgruntuvannya ta obsyahy emisiynykh vtrat CO2 [Humus content under different use of sod-podzolic sandy loam soil and volumes of CO2 emission losses]. Naukovi dopovidi NUBiP Ukrayiny [Scientific reports of the National University of Life and Environmental Sciences of Ukraine]. no. 2 (84). DOI: 10.31548/dopovidi2020.02.
6. Trofymenko, P. (2024). Dyferentsiatsiya profilnoho rozpodilu CO2 gruntovoho povitrya ta otsinka stiykosti systemy «grunt – atmosfera» do abiotychnykh vplyviv [Differentiation of the profile distribution of CO2 of the soil air and assessment of the stability of the "soil – atmosphere" system to abiotic influences]. International Science Journal of Engineering & Agriculture. Vol. 3(1), pp. 61–74. DOI: 10.46299/j.isjea.20240301.07
7. Trofymenko, P.I., Trofymenko, N.V., Veremeienko, S.I., Borisov, F.I. (2019). Metodolohiya vyznachennya intensyvnosti dykhannya gruntiv ta emisiyni vtraty vuhletsyu ahrolandshaftamy Livoberezhnoho Polissya naprykintsi periodu vehetatsiyi roslyn [Metodologiya vyznachennia intensosti respiration soiliv ta emission loss of carbon by agrolandscapes of Livoberezhnoho Polissia at the end of the vegetation period of plants]. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu [Bulletin of Lviv National Agrarian University]. Vol. 3, pp. 238–243.
8. Li, M., Peng, J., Lu, Z., Zhu, P. (2023). Research progress on carbon sources and sinks of farmland ecosystems. Resources, Environment and Sustainability. no 11, 100099. DOI: 10.1016/j.resenv.2022.100099
9. Khumarov, O.A. (2016). Formuvannya instytutsiynoho zabezpechennya rozpodilu kvot parnykovykh haziv [ Institutional support for the distribution of greenhouse gas quotas]. Zb. nauk. prats Ekonomichni innovatsiyi Instytut problem rynku ta ekonomiko-ekolohichnykh doslidzhen NAN Ukrayiny [Coll. Sci. Works Economic Innovations Institute of Market Problems and Economic and Environmental Research of the National Academy of Sciences of Ukraine]. Odesa, Issue 61, pp. 358–367. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/79164/41-Khumarov.p...
10. Demidenko, O., Shapoval, O., Velychko, V., Boyko, P. (2015). Koloobih orhanichnoho vuhletsyu v ahrotsenozakh riznorotatsiynykh sivozmin [Organic carbon cycle in agrocenoses of multirotational crop rotations]. Visnyk ahrarnoyi nauky [Bulletin of Agrarian Science]. Vol. 93, no. 3, pp. 56–62. DOI: 10.31073/ agrovisnyk201503-11
11. Khumarov, O.A. (2015). Teoretychni osnovy formuvannia vintrinnoho carbonnoho rynku v Ukrainy [Theoretical foundations of the formation of the internal carbon market in Ukraine]. Social'no-ekonomichni problemy suchasnogo periodu Ukrai'ny [Socio-economic problems of the modern period of Ukraine]. Issue. 1, pp. 86–91. Available at: http://nbuv.gov.ua/ UJRN/sepspu_2015_1_18.
12. Yang, Y., Tilman, D. (2020). Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Research Journal. Vol. 7(2), pp. 1143– 1148. DOI: 10.18331/BRJ2020.7.2.2
13. Trofymenko, P.I., Ivanik, O.M., Trofymenko, N.V. (2020). Metodolohiya monitorynhu SO2 v systemi «grunt-atmosfera-roslyna» ta dobovyy biolohichnyy koloobih vuhletsyu gruntiv ahrolandshaftiv Polissya Ukrayiny [Methodology for monitoring CO2 in the system "soil-atmosphere-plant" and daily biological carbon cycle of soils of agricultural landscapes of Ukraine]. Tavriyskyy naukovyy visnyk [Tavria Scientific Bulletin]. no. 110, Part 2, pp. 231–244. DOI 10.32851/2226-0099.2019.110-2.30
14. Muñoz, C., Paulino, L., Monreal, C., Zagal, E. (2010). Greenhouse gas (CO2 and N2 O) emissions from soils: a review. Chilean journal of agricultural research. no 70(3), pp. 485–497. Available at: https:// pdfs.semanticscholar.org/a338/b0c47b6bf21b29b39b24833b384ace7a1d38.pdf
15. Matteucci, G., Dore, S., Stivanello, S., Rebmann, C., Buchmann, N. (2000). Soil respiration in beech and spruce forest in Europe: trends, controlling factors, annual budgets and implications for the ecosystem carbon balance. Carbon and nitrogen cycling in European forest ecosystems. Springer Verlag, Berlin, Germany. pp. 217–236. DOI: 10.1007/978-3-642- 57219-7_10.
16. Demydenko, O.V. (2022). Porivnyalna efektyvnist korotkorotatsiynykh sivozmin za sekvestratsiynoyu zdatnistyu ta ahroenerhetychnoyu produktyvnistyu [Comparative efficiency of short-rotation crop rotations in terms of sequestration ability and agroenergetic productivity]. Visnyk ahrarnoyi nauky [Bulletin of Agrarian Science]. no. 8 (833). DOI: 10.31073/agrovisnyk202208-02
17. Wilson, L., New, S., Daron, J., Golding, N. (2021). Climate Change Impacts for Ukraine. Met Office, 34 p. Available at: https://www.metoffice.gov.uk/ binaries/content/assets/metofficegovuk/pdf/services/ government/met-office_climate-change-impacts-forukraine_report_08dec2021_english.pdf
18. Bruna de Oliveira, Silva, Mara Regina, Moitinho, Gustavo André de Araújo, Santos, Daniel De Borto, i Teixeira, Caro ina, Fernandes, Newton a Sca, a Jr. (2019). Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil and Tillage Research. Vol. 186, pp. 224–232. DOI: 10.1016/j. still.2018.10.019
19. Ryzhuk, S.M., Kochyk, H.M., Melnychuk, A.O., Kucher, G.A., Savchuk, O.I. (2022). Obgruntuvannya pidkhodiv i stratehichnykh napryamiv shchodo sekvestratsiyi y zbilshennya orhanichnoho vuhletsyu v gruntakh zony Polissia [Substantiation of approaches and strategic directions for sequestration and increase of organic carbon in soils of the Polissia zone]. Visnyk ahrarnoyi nauky [Bulletin of Agrarian Science]. no. 5 (830), pp. 20–32. DOI: 10.31073/agrovisnyk202205-04.
20. Polovyi, V.M., Yashchenko, L.A., Rovna, G.F., Huk, B.V. (2022). Intensyvnist emisiyi CO2 z dernovo-pidzolystoho gruntu za riznykh doz meliorantiv i udobrennya ripaku ozymoho u Zakhidnomu Polissia [Intensity of CO2 emission from sod-podzolic soil at different doses of ameliorants and fertilization of winter rapeseed in Western Polissia]. Zbirnyk naukovykh prats «Ahrobiolohiya» [Collection of scientific papers "Agrobiology"]. no. 1, pp. 36–42. DOI: 10.33245/2310- 9270-2022-171-1-36-42
21. Wang, Y., Yao, Z., Zhan, Y., Zheng, X., Zhou, M., Yan, G., Wang, L., Werner, C., Butterbach Bahl, K. (2021). Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology. Vol. 27(12), pp. 2807–2821. DOI: 10.1111/gcb.15607
 
Download this article: 
AttachmentSize
PDF icon polioviy_1_2024.pdf666.15 KB