You are here

Millet pollen quality depending on the growing conditions and varietal characteristics

The aim of the study is to find out the features of forming the quality of pollen grains, namely their size and viability, depending on the growing conditions and varietal characteristics of switchgrass.

The research deals with the peculiarities of millet pollen grains formation, depending on the conditions of vegetation and varietal composition, as the pollen quality – its size and viability – affects the seeds germination. It was established that the pollen quality depended both on the conditions of the growing season and varietal composition. Thus, in the 2018 growing season the weather conditions in the flowering phase (July) were favorable for the viable pollen formation, and high temperatures in August, exceeding 35 oC after 11:00 am at the absence of precipitation affected the viability of the pollen. In all the varieties, the viability of pollen was low. The most viable pollen was in the Morozko variety and the least viable – in the Cave-in-Rock variety, which negatively affected the seed germination. Pollen grains are spherical in form and colorless. They were not uniform in size both depending on the genotype and the growing conditions. In 2018 the pollen grains size ranged from 29 to 60 microns, in 2019 – from 5.2 to 57.2 microns. In 2019, the smaller pollen formed compared to 2018 due to high average daily air temperatures that exceeded average daily long-term values and due to significant moisture deficiency.

Millet pollen is not homogeneous, depending on the both genotype and vegetation conditions. In 2018, which was favorable for pollen formation, the size varied from 29 to 60 microns, and in the less favorable 2019, it was smaller and ranged from 5.2 to 57.2 microns. The largest size of pollen grains formed in the Sunburst variety compared to other varieties. The most uniform – 85.3 % of the total amount – was the pollen in the Cave-in-Rock variety.

Key words: pollen grains, quality, pollen size, viability, pollen form, variability, uniform.

 

Reference: 
1. Sinchenko, V.M., Gumentyk, M.Ja., Bondar, V.S. (2014). Perspektyvy tehnologii' vyrobnyctva biopalyva [Prospects for biofuel production technology]. Bioenergetyka [Bioenergy]. Kyiv, no. 2(4), 13 p.
2. Kurylo, V.L., Jalans'kyj, O.V., Gamandij, L.V., Karazhbej, G.M. (2012). Problemy bioenergetychnoi' ocinky sortovyh kul'tur [Problems of bioenergy evaluation of varietal crops]. Zbirnyk naukovyh prac' Umans'kogo nacional'nogo universytetu sadivnyctva [Proceedings of the Uman National University of Horticulture]. Uman, Issue 80, pp. 123–129.
3. Roi'k, M.V., Ganzhenko, O.M., Tymoshhuk, V.L. (2015). Koncepcija vyrobnyctva i vykorystannja tverdyh vydiv biopalyva v Ukrai'ni [The concept of production and use of solid biofuels in Ukraine]. Bioenergetyka [Bioenergy], no. 1(5), 5 p.
4. Gumentyk, M.Ja. (2012). Vyroshhuvannja ta vykorystannja organichnoi' syrovyny dlja vyrobnyctva energii' [Growing and using organic raw materials for energy production]. Zbirnyk naukovyh prac' IBKiCB [Collection of Scientific Papers of IBKiCB]. Kyiv, Issue 14, 546 p.
5. Zinchenko, V.O. (2005). Biomasa jak al'ternatyvne dzherelo energii' [Biomass as an alternative energy source]. Ekologichnyj visnyk [Ecological Bulletin], pp. 24–25.
6. Kupcov, N.S., Popov, E.G. (2015). Jenergoplantacii. Spravochnoe posobie po ispol'zovaniju jenergeticheskih kul'tur [Energy plantations. Energy Crop Reference Guide]. Minsk, Tehnologija, 128 p.
7. Chekalin, N.M., Tishhenko, V.N., Batashova, M.E. Klasifikacija, kariotip i biologicheskie osobennosti Panicum [Classification, Karyotype, and Biological Features of Panicum]. Selekcija i genetika otdel'nyh kul'tur [Breeding and genetics of separate cultures]. Available at: https://agromage.com/stat_id.php?id=475
8. Kulyk, M.I. (2012). Botanichni osoblyvosti ta harakterystyka ekotypiv prosa lozovydnogo [Botanical features and characterization of the ecotypes of millet prominent]. Materialy vos'moi' 164 mizhnarodnoi' naukovo-praktychnoi' Internet-konferencii' «Prostir i chas suchasnoi' nauky» [Proceedings of the Eighth 164 International Scientific and Practical Internet Conference "Space and Time of Modern Science"]. Kyiv, pp. 6–7.
9. Shherbakova, T.O. Rahmetov, D.B. (2017). Osoblyvosti budovy pagoniv prosa prutopodibnogo (Panicum Virgatum L) v umovah introdukcii' v Pravoberezhnomu Lisostepu ta Polissi Ukrai'ny [Features of structure of shoots of panic-shaped millet (Panicum Virgatum L) in the conditions of introduction in the Right-bank Forest-steppe and Polissya of Ukraine]. Plant Varieties Studying and protection. Vol. 13, no. 1, pp. 85–88. Available at: http://dx.doi.org/10.21498/2518-1017.13.1.2017.97334
10. Kulyk, M.I., Jurchenko, S.O. (2014). Formuvannja produktyvnosti introdukovanogo v central'nij chastyni Ukrai'ny Panicum virgatum L. (prosa lozopodibnogo) [Productivity formation of the Panicum virgatum L. introduced in the central part of Ukraine (vine-shaped millet)]. Faktory eksperymental'noi' evoljucii' organizmiv [Factors of experimental evolution of organisms: Coll. Sciences. National Academy of Sciences of Ukraine, Institute of Molecular Biology and Genetics, Ukr. Geneticists and Breeders of M. Vavilov], Vol. 14, pp. 160–164.
11. Gumentyk, M.Ja. (2004). Agrotehnichni pryjomy vyroshhuvannja prosa prutopodibnogo Panicum Virgatum L. [Agrotechnical techniques for growing millet of Panicum Virgatum L.]. Bioenergetyka [Bioenergy], no. 1, pp. 29–32.
12. Kassidy Nikole Yatso. (2011). Planting and production of switchgrass (Panicum virgatum L.) as a bioenergy crop in Michigan's Upper Peninsula. Peninsula "Master 3esis, Michigan. University of Technology. Houghton. Michigan, United States. Available at: https://digitalcommons.mtu.edu/etds/162/
13. Petrychenko, S.M., Gerasymenko, O.V., Goncharuk, G.S. (2011). Perspektyvy vyroshhuvannja svichgrasu jak al'ternatyvnogo dzherela energii' v Ukrai'ni [Prospects for Growing Switches as an Alternative Energy Source in Ukraine]. Cukrovi burjaky [Sugar beet], no. 3, pp. 12–14.
14. Doronin, V.A., Kravchenko, Ju.A., Goncharuk, G.S., Doronin, V.V., Shevchenko, T.V., Karpuk, L.M. (2016). Vplyv vologosti lozha dlja proroshhuvannja nasinnja prosa lozovydnogo (Panicum virgatum L) na intensyvnist' jogo prorostannja [Influence of the humidity of the bed for germination of the seeds of the millet vine (Panicum virgatum L) on the intensity of its germination]. Novitni agrotehnologii' [Modern agricultural technologies]. IBKiCB, no. 4. Available at: https://doi.org/10.21498/na.1(4).2016.118204
15. Doronin, V.A., Kravchenko, Ju.A., Busol, M.V., Doronin, V.V., Mandrovs'ka, S.M., Goncharuk, G.S. (2015). Vyznachennja shozhosti nasinnja prosa prutopodibnogo (svichgrasu) Panicum virgatum L. [Determination of germination of millet seeds of Panicum virgatum L.]. Metodychni rekomendacii' [Guidelines]. Kyiv, IBKICB NAAN, 10 p.
16. Doronin, V.A., Kravchenko, Ju.A., Busol, M.V., Doronin, V.V., Mandrovs'ka, S.M. (2015). Vyznachennja energii' prorostannja ta shozhosti nasinnja svichgrasu [Determination of germination energy and seed germination similarity]. Visnyk Umans'kogo nacional'nogo universytetu sadivnyctva [Bulletin of the Uman National University of Horticulture], no. 1, pp. 64–68.
17. Doronin, V.A., Kravchenko, Ju.A., Busol, M.V, Doronin, V.V. (2014). Sposoby pidvyshhennja jakosti nasinnja svichgrasu [Ways to improve the quality of grape seed]. Bioenergetyka [Bioenergy], no. 2, pp. 22–24.
18. Kashikar, Neha, Kalkar, S.A. (2010). Pollen morphology of millets-exine surface ultrastructure. Institute of Science, Nagpur. Nagpur. India, pp. 85–90. Available at: https://www.ajebs.com/special/SP-17.pdf
19. Jarmoljuk, G.Y., Shhyrjaeva, E.Y. (1982). Cytologycheskye y cytogenetycheskye yssledovanyj v selekcyy saharnoj svekly [Cytological and cytogenetic studies in sugar beet breeding]. Metodycheskye rekomendacyy [Guidelines]. Kyiv, VNYS, 40 p.
20. Djanaguiraman M., Perumal R., Ciampitti I.A., Gupta S.K., Prasad P.V.V. Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ. 2018 May, 41(5), pp. 993–1007. Available at: https://doi.org/10.1111/pce.12931

 

Download this article: 
AttachmentSize
PDF icon dryha_2_2019.pdf556.51 KB