You are here

Effect of organic farming on the ladybird beetle diversity (Coleoptera: Coccinellidae)

Coccinellidae perform the function of biological control of pests in nature, they eat aphids and other insects, which is important in organic agriculture. The aim of the work was to establish the distribution and species composition of the family Coccinellidae in the organic agro-landscape. The research was conducted at the Skvyra research station of organic production (Kyiv region, Ukraine). Insects were collected by entomological mowing with a net in four stages of plant development. The organic agro-landscape included crops of buckwheat, oats, soybeans and winter wheat. Data from neighbor conventional soybean and winter wheat ecosystems were used for comparison. The agroecosystems of these crops, which included felds, ecotones ”feld – feld protective forest shelter belt”, feld protective forest shelter belts, were studied. The study identifed 10 species of the family Coccinellidae, the number of species ranged from 1 to 89/100 waves, the largest in the ecosystem of organic winter wheat. H. axiridis belonged to the recedents and was found in fve agroecosystems in the amount of 1-7 individuals / 100 waves. The most common species were C. septempunctata, T. sedecimpunctata and larvae of Coccinellidae, which were eudominant in the organic agro-landscape. Species Vibidia sp. was found only in organic agroecosystems of buckwheat and oats. The variety of ladybugs in organic winter wheat was higher than in conventional. Organic soybeans, in contrast, had less variety of Coccinellidae than conventional soybeans, as confrmed by cluster analysis. Species richness in crop ecosystems ranged from 3 to 8 in different study periods. High correlations of insect numbers were found between felds, ecotones and forest shelter belts, as well as between neighbor ecotones and neighbor forest belts, which indicates the migration of insects between these areas. Thus, the diversity and prevalence of Coccinellidae in the organic agro-landscape, compared to the traditional one, has been established.

Key words: ladybugs, organic farming, agrolandscape, agroecosystem, crops, species.

 

Reference: 
1. Bieńkowski, A.O. (2018). Key for identifcation of the ladybirds (Coleoptera: Coccinellidae) of European Russia and the Russian Caucasus (native and alien species). Zootaxa, 4472(2), pp. 233–260. Available at: https://doi.org/10.11646/ zootaxa.4472.2.2.
2. Roy, H., Migeon, A. (2010). Ladybeetles (Coccinellidae). Chapter 8.4. BioRisk, 4(July). pp. 293–313. Available at: https://doi.org/10.3897/biorisk.4.49.
3. Kundoo, A.A., Khan, A.A. (2017). Coccinellids as biological control agents of soft bodied insects: A review. Journal of Entomology and Zoology Studies. 5(5 R), pp. 1362–1373.
4. Honěk, A. (2012). Distribution and Habitats. Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), Chapter 4, pp. 110–140. Available at: https://doi. org/10.1002/9781118223208.ch4.
5. Ponnusamy, N., Biwash, G., Suprakash, P. (2019). Faunistics and diagnostics of predaceous Coccinellids in Terai region of West Bengal. 81(4), pp. 896–899.
6. Honek, A., Dixon, A.FG., Soares, A., Skuhrovec, J., Martinkova, Z. (2017). Spatial and temporal changes in the abundance and compostion of ladybird (Coleoptera: Coccinellidae) communities, Current Opinion in Insect Science. Vol. 20, pp. 61–67. Available at: https://doi.org/10.1016/j. cois.2017.04.001.
7. Koch, R.L., Galvan, T.L. (2008). Bad side of a good beetle: The North American experience with Harmonia axyridis. BioControl. 53(1), pp. 23–35. Available at: https://doi. org/10.1007/s10526-007-9121-1.
8. Escalona, H.E., Zwick, A., Li, H.S. (2017). Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evol Biol. 17, 151. Available at: https://doi. org/10.1186/s12862-017-1002-3
9. Rosagro, R.M., Borges, I., Vieira, V., Solé, G.P., Soares, A.O. (2020). Evaluation of Scymnus nubilus (Coleoptera: Coccinellidae) as a biological control agent against Aphis spiraecola and Cinara juniperi (Hemiptera: Aphididae). Pest. Manag. Sci. 76, pp. 818–826. Available at: https://doi. org/10.1002/ps.5585.
10. Kundoo, A.A., Khan, A.A. (2017). Coccinellids as biological control agents of soft bodied insects: A review. Journal of Entomology and Zoology Studies. 5(5), pp. 1362–1373.
11. Lumbierres, B., Madeira, F., Pons Prey, X. (2018). Acceptability and Preference of Oenopia conglobata (Coleoptera: Coccinellidae), a Candidate for Biological Control in Urban Green Areas. Insects. 9(1), 7. Available at: https://doi. org/10.3390/insects9010007.
12. Niedobová, J., Skalský, M., Fric, Z.F., Hula, V., Brtnický, M. (2019). Effects of so-called “environmentally friendly” agrochemicals on the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinelidae) Eur. J. Entomol. 116, pp. 173–177. Available at: https://doi.org/10.14411/eje.2019.018.
13. Jalali, M.A., Van Leeuwen, T., Tirry, L., De Clercq, P. (2009). Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica. 37(4), pp. 323–326. Available at: https://doi.org/10.1007/s12600-009-0051-6.
14. Skouras, P.J., Stathas, G.J., Voudouris, C.C., Darras, A.I., Tsitsipis, J.A., Margaritopoulos, J.T. (2017). Effect of synthetic insecticides on the larvae of Coccinella septempunctata from Greek populations. Phytoparasitica 45(2), pp. 165–173. Available at: https://doi.org/10.1007/ s12600-017-0577-y.
15. Afza, R., Afzal, M., Majeed, M.Z., Riaz, M.A. (2019). Effect of intra-guild predation and sub lethal concentrations of insecticides on the predation of coccinellids. Pakistan Journal of Zoology 51(2), pp. 611–617. Available at: https://doi.org/10.17582/journal.pjz/2019.51.2.611.617.
16. Koch, R.L., Costamagna, A.C. (2017). Reaping benefts from an invasive species: role of Harmonia axyridis in natural biological control of Aphis glycines in North America. BioControl 62, pp. 331–340. Available at: https://doi. org/10.1007/s10526-016-9749-9.
17. Hiller, T., Haelewaters, D. A case of silent invasion: Citizen science confrms the presence of Harmonia axyridis (Coleoptera, Coccinellidae) in Central America. PLoS ONE 14(7), 2019. e0220082. Available at: https://doi.org/10.1371/ journal.pone.0220082.
18. Ukrainsky, A.S., Orlova-Bienkowskaja, M.J. (2014). Expansion of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) to European Russia and adjacent regions. Biological Invasions, 16(5), pp. 1003–1008. Available at: https://doi. org/10.1007/s10530-013-0571-3.
19. Viktor, M., Gabor, P. (2009). Aharlekinkatica (Harmonia Axyridis Pallas, 1773) (Coleoptera, Coccinellidae) Elterjedése Magyarországon És Megjelenése Romániában, Ukrajnában. Növényvédelem. 45 (9), pp. 481–490.
20. Miroshnyk, N.V., Lavrov, V.V., Grabovsky, M.B., Grabovskaya, T.O., Teslenko, I.K. (2020). Porivnjal'nyj analiz ekologichnoi' struktury ftoriznomanittja polezahysnyh lisosmug na poljah organichnogo ta tradycijnogo vyrobnyctva [Comparative analysis of the ecological structure of phytodiversity of feld protective forest belts in felds of organic and traditional production]. Ekologichni nauky [Environmental sciences]. Issue 3 (30), pp. 64–72.
21. Kasprzak, K., Niedbała, W. (1981). Wskaźniki biocenotyczne stosowane przy porządkowaniu i analizie danych w badaniach ilościowych. In: Górny M., Grüm L., eds. Metody Stosowane w Zoologii Gleby. PWN, Warszawa. pp. 379–416.
22. Mühlenberg, M., Behre, G.F., Bogenrieder, A. (1993). Freilandökologie. 3rd ed. UTB Quelle & Meyer Verlag; Heidelberg, Germany.
23. Soares, A.O., Honěk, A., Martinkova, Z., Brown, P.M.J., Borges, I. (2018). Can Native Geographical Range, Dispersal Ability and Development Rates Predict the Successful Establishment of Alien Ladybird (Coleoptera: Coccinellidae) Species in Europe, Front. Ecol. Evol. 6:57. Available at: https://doi.org/10.3389/fevo.2018.00057.
24. Makwela, M.M. (2019). Biodiversity of predatory beetle groups, carabidae and coccinellidae and their role as bioindicators in wheat agroecosystems. Dissertation. Master of science in the subject agriculture at the University of South Africa. 99 р. Available at: http://hdl.handle.net/10500/26902.
25. Pushnya, M.V., Rodionova, E.Yu., Snesareva, E.G., Ismailov, V.Ya. (2020). Regulirujushhaja rol' jentomofagov dominantnyh vreditelej ozimoj pshenicy v sistemah organicheskogo zemledelija [Regulatory role of entomophages of dominant pests of winter wheat in organic farming systems]. Dostizhenija nauki i tehniki APK [Achievements of science and technology of the agro-industrial complex], no. 7, pp. 49–55. Available at: https://cyberleninka.ru/article/n/reguliruyuschaya-rol-entomofagov-domin....
26. Grin'ko, A.V. (2018). Jentomofagi vreditelej ozimoj pshenicy v uslovijah Nizhnego Dona [Entomophagous pests of winter wheat in the conditions of the Lower Don]. Nauchno-prakticheskij jelektronnyj zhurnal Alleja Nauki [Scientifc and practical electronic journal Alley of Science], no. 3(19). Available at: https://alley-science.ru/domains_data/fles/ 12March18/ENTOMOFAGI%20VREDITELEY%20OZIMOY%20PShENICY%20V%20USLOVIYaH%20NIZhNEGO%20DONA.pdf.
27. Medvid, Y. (2017). Fauna and Station Distribution of Coccinellids (Coleoptera: Coccinellidae) in the Right-Bank Forest Steppe. Interdepartmental Thematic Scientifc Collection of Plant Protection and Quarantine. (63), pp. 123–128. Available at: https://doi.org/10.36495/1606-9773.2017.63

 

Download this article: 
AttachmentSize
PDF icon grabovska_1_2021.pdf456.74 KB