You are here

Directions and reproduction soil fertility technologies in the post-war period in Ukraine

 

The article is devoted to the study of the military action's negative consequences on the soil fertility state in Ukraine and directions for their reproduction. The topic actuality is that a third of the arable agricultural lands were affected by military actions, which, taking into account the agrarian direction of production in the eastern and southern regions of Ukraine, threatens a significant decrease in the agricultural products' cultivation. The article aims to substantiate the effectiveness of technologies applied to overcome the affect of military activities on soil fertility reproduction in Ukraine. The study reveals the war negative consequences on the soil structure and properties and argues that it will take hundreds of years to reproduce naturally. The main types of warfare-induced disturbances to soil are defined and described: the soil structure modification (bombs craters, sealing, etc.) and chemical disturbances (pollutants input). Taking into account the existing experience of overcoming the military actions consequences in the agricultural soil reproduction, a certain procedure for reproducing the soil fertility with different degrees and causes of damage is proposed. The options for soil reproduction with a natural integrity of genetic horizons violation and methods of removing contamination with heavy metals (mechanical, physico-chemical, and biological) are considered. For the practical implementation of the proposed measures, an approximate costs' calculation of the soil fertility reproducing from the military actions consequences in Ukraine was made. It has been determined that for the reproduction of soil properties and their suitability for use in agricultural production, the greatest expenses (excluding humanitarian demining) are spent on mechanical melioration (81.8 %). However, the expenses amount depends on the number of shell explosion craters and their caliber, and the methods of reproduction the soil agrochemical properties. The peculiarities of legal regulation in soil conservation and the fertility protection, in determination of damage caused to lands and soils of Ukraine as a result of armed aggression against the country are indicated. The performed calculations will become key evidence in terms of damage amount compensation in lawsuits against the aggressor country.

Key words: toxic elements, bombturbation, demining, basalt tuff, bioremediation, phytoremediation.

 

Reference: 
1. Maizhe tretyna ukrainskykh poliv mozhe buty nezasiianymy abo nedostupnymy [Almost a third of Ukrainian fields may be unseeded or inaccessible]. 2022. Available at: https://uncg.org.ua/a-third-uacrops.
2. Warren, S.D. (2001). Synopsis: Influence of biological soil crusts on arid land hydrology and soil stability. J. Belnap, O.L. Lange (eds.). Biological soil crusts: Structure, function and management. Heidelberg, Springer-Verlag, pp. 351–362.
3. Ayers, P.D., Shaw, R.B., Diersing, V.E., Riper, J.Van. (1990). Soil compaction from military vehicles. Presentation at the International Summer Meeting. Michigan-St. Joseph: American Society of Agricultural Engineers.
4. Demarais, S., Tazik, D.J., Guertin, P.J., Jorgensen, E.E. (1999). Disturbance associated with military exercises. L.R. Walker (ed.). Ecosystems of disturbed grounds. New York, Elsevier, pp. 385–396.
5. Warren, S.D., Eldridge, D.J. (2001). Biological soil crusts and livestock in arid ecosystems: Are they compatible? J. Belnap, O.L. Lange (eds.). Biological soil crusts: Structure, function and management. Heidelberg, Springer-Verlag, pp. 403–417.
6. Belnap, J., Eldridge, D.J. (2001). Disturbance and recovery of biological soil crusts. J. Belnap, O.L. Lange (eds). Biological soil crusts: Structure, function and management. Heidelberg, Springer-Verlag, pp. 365–386.
7. Kade, A.N., Warren, S.D. (2002). Soil and plant recovery after historic military disturbances in the Sonoran desert, USA. Arid Land Research and Management. Vol. 16(3), pp. 231–243. DOI: 10.1080/153249802760284784.
8. Holubtsov, O., Sorokina, L., Splodytel, A., Chumachenko, S. (2023). Vplyv viiny rosii proty Ukrainy na stan ukrainskykh gruntiv. Rezultaty analizu [The influence of Russia's war against Ukraine on the state of Ukrainian justifications. Analysis results]. Kyiv, NGO Center for Environmental Initiatives "Ekodia", 32 p. 
9. Kiernan, K. (2020). Geodiversity also needs protection during armed conflicts. Available at: https://ceobs.org/geodiversity-also-needs-protection-during-armed-conflicts.
10. Gorecki, S., Nesslany, F., Hube, D., Mullot, J., Vasseur, P., Marchioni, E., Camel, V., Noel, L., Le Bizec, B., Guerin, T., Feidt, C., Archer, X., Mahe, A., Riviere, G. (2017). Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. Science of the Total Environment. Vol. 599–600, pp. 314–323. DOI: 10.1016/j.scitotenv.2017.04.213.
11. Stadler, T., Temesi, Á., Lakner, Z. (2022). Soil Chemical Pollution and Military Actions: A Bibliometric Analysis. Sustainability. Vol. 14, 7138 p. DOI: 10.3390/su14127138.
12. Althoff, P.S., Thien, S.J. (2005). Impact of M1A1 main battle tank disturbance on soil quality, invertebrates, and vegetation characteristics. Journal of Terramechanic. Vol. 42, pp. 159–176. DOI: 10.1016/j. jterra.2004.10.014.
13. Certini, G., Scalenghe, R., Woods, W.I. (2013). The impact of warfare on the soil environment. Earth-Science Reviews. Vol. 127, pp. 1–15. DOI: 10.1016/j.earscirev.2013.08.009.
14. Nawaz, M.F., Bourrié, G., Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development. Vol. 33, pp. 291–309. DOI: 10.1007/s13593-011-0071-8.
15. Reabilitatsiia ukrainskykh gruntiv pislia viiny koshtuvatyme sotni milioniv dolariv – eksperty [Rehabilitation of Ukrainian soils after the war will cost hundreds of millions of dollars – experts]. 2022. Available at: https://superagronom.com/news/16200-reabilitatsiya-ukrayinskih-gruntiv-p....
16. Voienni dii na skhodi Ukrainy – tsyvilizatsiini vyklyky liudstvu [Military operations in eastern Ukraine – civilizational challenges to humanity]. Lviv, EPL, 2015, 136 p.
17. Tomic, N.T., Smiljanic, S., Jovic, M., Gligoric, M., Povrenovic, D., Dosic, A. (2018). Examining the effects of the destroying ammunition, mines, and explosive devices on the presence of heavy metals in soil of open detonation pit: Part 1 – Pseudo-total concentration. Water, Air, & Soil Pollution. Vol. 229, 301 p. DOI: 10.1007/s11270-018-3957-0.
18. Fayiga, A.O. (2019). Remediation of inorganic and organic contaminants in military ranges. Environmental Chemistry. Vol. 16, pp. 81–91. DOI: 10.1071/ EN18196.
19. Voytsikhovska, A. (2015). Doslidzhennia EPL vplyvu viiskovykh dii na dovkillia na skhodi Ukrainy [ELH study of the impact of military operations on the environment in eastern Ukraine]. Ekolohiia. Pravo. Liudyna [Ecology. Law. Human]. no. 23–24 (63–64), pp. 57–59.
20. Zasypka, L.H., Tarasenko, L.O., Makarikhina, I.V., Nikov, P.S., Liubchak, M.P., Stepanova, L.V., Babiienko, V.V. (2011). Sposib upravlinnia mihratsiieiu bioelementiv u systemi «grunt – kormy – orhanizm kurei-nesuchok – liudyna»: pat. 56958 Ukraina [The method of managing the migration of bioelements in the system "soil – feed – organism of laying hens – man": pat. 56958 Ukraine]. no. 2.
21. Soldatkin, O.O., Dziadevych, S.V., Soldatkin, O.P., Yelska, H.V. (2007). Konduktometrychnyi biosensor dlia vyznachennia kontsentratsii ioniv vazhkykh metaliv u vodnykh rozchynakh: pat. 25456 Ukraina [Conductometric biosensor for determining the concentration of heavy metal ions in aqueous solutions: pat. 25456 Ukraine]. no. 12.
22. Abramov, S.M., Sopelnyk, V.I. (2007). Ahroekolohichnyi preparat «biokolchuha»: pat. 26085 Ukraina [Agroecological preparation "bio mail": pat. 26085 Ukraine]. no. 14.
23. Makanjuola, O.M., Bada, B.S., Ogunbanjo, O.O., Olujimi, O.O., Akinloye, O.A., Adeyemi, M.O. (2019). Heavy metal speciation and health risk assessment of soil and jute mallow (Corchorus Olitorus) collected from a farm settlement in Ikorodu, Lagos, Nigeria. Journal of Agricultural Chemistry and Environment. no. 8(4), pp. 201–223. DOI: 10.4236/ jacen.2019.84016.
24. Hevko, R.B., Dolzhenchuk, V.I., Broshchak, I.S., Dziadykevych, Yu.V., Hevko, B.R. (2016). Sposib ochyshchennia gruntiv vid radionuklidiv, vazhkykh metaliv i pestytsydiv: pat. 112025 Ukraina [A method of soil purification from radionuclides, heavy metals and pesticides: pat. 112025 Ukraine]. no. 22.
25. Samokhvalova, V.L. (2014). Biologichni metody remediacii' g'runtiv, zabrudnenyh vazhkymy metalamy [Biological methods of remediation of soils contaminated with heavy metals]. Biologichni studii' [Biological studies]. no. 8(1), pp. 217–236. DOI: 10.30970/sbi.0801.337.
26. Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W.W., Fallmann, K., Puschenreiter, M. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology & Biochemistry. no. 60, pp. 182–194. DOI: 10.1016/j.soilbio.2013.01.012.
27. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research. no. 16, pp. 765–794. DOI: 10.1007/s11356-009-0213-6.
28. Havryliak, M.Ya., Baranov, V.I. (2010). Sposib ochyshchennia gruntiv porodnoho vidvalu vuhilnykh shakht vid vazhkykh metaliv: pat. 50789 Ukraina [The method of cleaning the soils of rock dumps of coal mines from heavy metals: pat. 50789 Ukraine]. no. 12.
29. Korzh, O.P., Savchenko, I.H., Hura, N.O. (2013). Fitoremediatsiinyi sposib ochyshchennia gruntiv vid vazhkykh metaliv: pat. 76416 Ukraina [Phytoremediation method of soil purification from heavy metals: pat. 76416 Ukraine]. no. 1.
30. Dron, M.M., Chmylenko, F.O., Smitiuk, N.M. (2005). Sposib ochyshchennia tekhnohenno zabrudnenykh gruntiv vid vazhkykh metaliv: pat. 4726 Ukraina [A method of cleaning technogenically polluted soils from heavy metals: pat. 76416 Ukraine]. no. 2.
31. Butiuhin, O.V., Uzdennikov, M.B., Hnedenko, M.V. (2009). Sposib rekultyvatsii terykoniv: pat. 45299 Ukraina [The method of reclamation of tericons: pat. 76416 Ukraine]. no. 21.
32. Makneil, S., Chemberlein, D., Bouver, R. (2010). Stres-tolerantna transhenna roslyna pshenytsi: pat. 90279 Ukraina [Stress-tolerant transgenic wheat plant: pat. 90279 Ukraine]. no. 8.
33. Dermont, G., Bergeron, M., Mercier, G., Richer-Laflèche, M. (2008). Metal-сontaminated soils: remediation practices and treatment technologies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. no. 12(3), pp. 188–209. DOI: 10.1061/(ASCE)1090-025X(200812:3)188.
34. Abramov, S.M., Sopelnyk, V.I. (2007). Sposib vyroshchuvannia silskohospodarskykh kultur na gruntakh, zabrudnenykh radionuklidamy i/abo vazhkymy metalamy: pat. 25274 Ukraina [The method of growing crops on soils contaminated with radionuclides and/or heavy metals: pat. 25274 Ukraine]. no. 12.
35. Abramov, S.M., Sopelnyk, V.I., Sopelnyk, K.V. (2008). Orhanomineralne pastopodibne dobryvo: pat. 34132 Ukraina [Organomineral pasty fertilizer: pat. 25274 Ukraine]. no. 14.
36. Butiuhin, O.V., Uzdennikov, M.B., Zubkova, Yu.M., Hnedenko, M.V. (2008). Sposib rekultyvatsii terykoniv: pat. 38149 Ukraina [The method of reclamation of tericons: pat. 25274 Ukraine]. no. 24.
37. Karpenko, O.V., Shchehlova, N.S., Vildanova-Martsyshyn, R.I., Baranov, V.I., Shulha, O.M. (2013). Preparat kompleksnoi dii dlia vykorystannia u silskomu hospodarstvi ta rekultyvatsii tekhnohenno zminenykh gruntiv: pat. 77228 Ukraina [A drug of complex action for use in agriculture and reclamation of man-made soils: pat. 25274 Ukraine]. no. 3.
38. Murunga, S.I., Wafula, E.N., Sang, J. (2020). The Use of Freshwater Sapropel in Agricultural Production: A New Frontier in Kenya. Advances in Agriculture. 2020. 8895667. DOI: 10.1155/2020/8895667.
39. Allohverdi, T., Mohanty, A.K., Roy, P., Misra, M. (2021). A review on current status of biochar uses in agriculture. Molecules. Vol. 26(18), 5584 p. DOI: 10.3390/molecules26185584.
40. Karthik, A., Hussainy, S.A.H., Rajasekar, M. (2020). Comprehensive study on biochar and its effect on soil properties: a review. International Journal of Current Microbiology and Applied Sciences. Vol. 9(05), pp. 459–477. DOI: 10.20546/ijcmas.2020.905.052.
41. Keske, C., Godfrey, T., Hoag, D.L., Abedin, J. (2019). Economic feasibility of biochar and agriculture coproductionfrom Canadian black spruce forest. Food and Energy Security. Vol. 00, e118. DOI: 10.1002/ fes3.188.
42. Dragišić, M. J., Zang, J., Zeng, F.H., Živanovič, B.D., Shabala, L., Zhou, M., Shabala, S. (2013). Linking oxidative and salinity stress tolerance in barley: can root antioxidant enzyme activity be used as a measure of stress tolerance. Plant and Soil. Vol. 365(1– 2), pp. 141–155.
43. Lopes, C., Herva, M., Franco-Uria, A., Roca, E. (2011). Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: evaluating the risk of transfer into the food chain. Environmental Science and Pollution Research. Vol. 18(6), pp. 918–939. DOI: 10.1007/s11356-011-0444-1.
44. Juwarkar, A., Nair, A., Dubey, K., Singh, S., Devotta, S. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere. Vol. 68, pp. 1996–2002. DOI: 10.1016/j. chemosphere.2007.02.027.
45. Husarova, A. (2022). Microbial products can reduce the effect of heavy metals on plants in case of soil contamination [Microbial products can reduce the impact of heavy metals on plants in case of soil contamination]. Available at: https://superagronom.com/ news/16438-mikrobni-produkti-mojut-zniziti-vplivvajkih-metaliv-na-roslini-u-razi-zabrudnennya-gruntiv.
46. Rashad, М., Hafez, М., Popov, А.І. (2022). Humic substances composition and properties as an environmentally sustainable system: A review and way forward to soil conservation. Journal of Plant Nutrition. Vol. 45(7), pp. 1072–1122. DOI: 10.1080/01904167.2021.2005801.
47. Bhatt, P., Singh, V.K. (2022). Effect of humic acid on soil properties and crop production – A review. Indian Journal of Agricultural Sciences. Vol. 92(12), pp. 1423–1430. DOI: 10.56093/ijas.v92i12.124948.
48. Korotkova, I.V., Chaika, T.O. (2022). Rol huminovykh preparativ ta yikh sumishei z mineralnymy dobryvamy v tekhnolohiiakh vyroshchuvannia pshenytsi ozymoi [The role of humic preparations and their mixtures with mineral fertilizers in winter wheat growing technologies]. Ekolohooriientovani pidkhody vidnovlennia tekhnohenno zabrudnenykh terytorii i stvorennia stalykh ekosystem [Ecologically oriented approaches to the restoration of technologically polluted territories and the creation of sustainable ecosystems]. Poltava, Astraya, pp. 279–322.
49. Vikram, N., Sagar, A., Gangwar, C., Husain, R., Narayan Kewat, R. (2022). Properties of humic acid substances and their effect in soil quality and plant health. Humus and Humic Substances – Recent Advances. DOI: 10.5772/intechopen.105803.
50. Chaika, T.O., Korotkova, I.V. (2023). Vidnovlennia rodiuchosti gruntu v Ukraini pislia voiennykh dii [Restoration of soil fertility in Ukraine after military operations]. Zakhyst i vidnovlennia ekolohichnoi rivnovahy ta zabezpechennia samovidnovlennia ekosystem [Protection and restoration of ecological balance and ensuring self-renewal of ecosystems]. Poltava, Astraya, pp. 232–281.
51. Pistryuga, T. (2022). Rozminuvaty polia: chas, hroshi, ryzyky ta chornyi rynok saperiv [Demining the fields: time, money, risks and the black market of sappers]. Available at: https://latifundist.com/interview/626-rozminuvati-polya-chas-groshi-rizi....
52. Pro zatverdzhennia metodyky vyznachennia rozmiru shkody zavdanoi zemli, gruntam vnaslidok nadzvychainykh sytuatsii ta/abo zbroinoi ahresii ta boiovykh dii pid chas dii voiennoho stanu: nakaz Ministerstva zakhystu dovkillia ta pryrodnykh resursiv Ukrainy [On the approval of the methodology for determining the amount of damage caused to land and soil as a result of emergency situations and/or armed aggression and hostilities during martial law: order of the Ministry of Environmental Protection and Natural Resources of Ukraine]. 2022, no. 167. Available at: https://zakon. rada.gov.ua/laws/show/z0406-22#Text.
53. Vasylieva, D., Datsiv, S. (2022). Yak derzhava fiksuvatyme shkodu, zavdanu zemliam ta gruntam vnaslidok viiny [How the state will record the damage caused to lands and soils as a result of the war]. Available at: https://yur-gazeta.com/publications/ practice/zemelne-agrarne-pravo/yak-derzhava-fiksuvatime-shkodu--zavdanu-zemlyam-ta-runtam-vnaslidok-viyni.html.
 

 

Download this article: 
AttachmentSize
PDF icon chaika_1_2023.pdf410.54 KB