You are here

Development of individual elements of a protocol for sustainable growth and propagation of garden strawberries (Fragaria ananassa Duch.) under aseptic conditions

Garden strawberry (Fragaria ananassa Duch.) is one of the most valuable fruits the demand for which in the food market is consistently high. One of the limiting factors for achieving consistently high-quality strawberry yields is the presence of diseases caused by bacteria, phytoplasmas, viruses, and viroids. In order to intensify the technology of garden strawberries cultivation, the problem of production in significant volumes of genetically constant material free from pathogens is essential. Biotechnological methods are currently relevant technologies that allow mass production of planting material with high phytosanitary and genetic quality. The purpose of the study is to update the protocol for microclonal propagation of garden strawberries to obtain virus-free planting material. The research was conducted in the micropropagation laboratory of LLC «Blahodatne» (Теvittaтм) Cherkasy region, Ukraine using the «Alba» and «Present» strawberry cultivars. A series of experiments were conducted according to the «step by step» principle on two types of explants: buds and meristems. The determinants for obtaining aseptic cultures from bud and meristem explants were investigated. The trophic influence was studied in media with different mineral content (at the multiplication stage) and sucrose concentrations during rhizogenesis. Among the phytohormonal determinants during the multiplication stage, the best combination among those investigated was the use of substances with cytokinin activity consisting of BAP at 0.2 mg/l and kinetin at 0.8 mg/l. The addition of 0.1 ml/l of «Gibb plus preparation» (GK4 + GK7) was effective for the reproduction rate increasing. Growing of donor explants in media with BAP at 0.2 mg/l, kinetin at 0.3 mg/l, and adenine at 0.5 mg/l, compared to the control (BAP at 1.0 mg/l) improved rhizogenesis in regenerants. The highest root formation rates were observed in the variant with 4 % of sucrose (40 g/l).

Key words: propagation; microclonal propagation; aseptic culture; trophic and hormonal determination.

 

Reference: 
1. Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J.L., Mezzetti, B., Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition. no. 28, pp. 9–19.
2. Ichihara, N., Maekawa, S., Ogawa, N., Yamada, A., Nagasato, T., Maruyama, I., Sone, K., Yasuda, M., Matsushita, K., Ito, C., Takaya, Y. (2023). Adenosine Acts as an Active Antiplatelet Constituent in Strawberries (Fragaria × ananassa) BPB Reports. Vol. 6, Issue 1, pp. 27–32.
3. Rozsada sunytsi z matochnykiv in vitro [Strawberry seedlings from the mother plant nursery in vitro]. Available at: https://farmer.ua/centr-posadkovogo-materialu/rozsada-sunici-z-matochnik...
4. Bragard, C., Dehnen-Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M.A., Miret, J.A.J., Justesen, A.F., MacLeod, A., Magnusson, C.S., Milonas, P., NavasCortes A, J., Parnel L.S., Potting, R., Reignault, P.L., Thulke, Hans-Hermann, Van der Werf, W., Civera, A.V., Yuen, J., Zappalà, L. (2020). List of nonEU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA Journal. no. 18(1), 5930 p. DOI: 10.2903/j.efsa.2020.5930.
5. Identyfikatsiia zbudnykiv virusnykh ta inshykh khvorob plodovykh, yahidnykh, horikhoplidnykh kultur i khmeliu [Identification of pathogens of viral and other diseases of fruit, berry, nut crops and hops]. Available at: https://labprice.ua/wp-content/uploads/2021/03/Patogeni-poslugi.pdf
6. Gardener. Fitopatohenni mikoplazmy – zbudnyky khvorob roslyn [Phytopathogenic mycoplasmas are pathogens of plant diseases]. 2022. Available at: https://fruit-grower.info/2022/12/13/fitopatogenni-mikoplazmi-zbudniki-h...
7. Weier, Cui, Barrera, Quiroga, Curkovic, Nicolas, Zamorano, S., Fiore Nicola, Alan. (2019). Detection and identification of 16SrXIII-F and a novel 16SrXIII phytoplasma subgroups associated with strawberry phyllody in Chile. European Journal of Plant Pathology. 155 p. DOI: 10.1007/s10658-019-01808-w.
8. Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy. Series B. Vol. 95, Issue 7, pp. 401–418. DOI: 10.2183/pjab.95.028.
9. Litvinenko, S.H., Budzhak, V.V. Fitopatolohiia: konspekt lektsii [Phytopathology]. Chernivtsi, Chernivtsi National University named after Yu. Fedkovicha, 92 p.
10. Udovychenko, K. Virusni khvoroby sunytsi sadovoi [Virus diseases of garden strawberries]. Available at: http://www.jagodnik.info/virusni-hvoroby-sunytsi-sadovoyi/
11. Posthuma, Karin, Adams, A., Hong, Yiguo, Kirby, M. (2002). Detection of Strawberry crinkle virus in plants and aphids by RT-PCR using conserved L gene sequences. Plant Pathology. no. 51, pp. 266–274. DOI: 10.1046/j.1365-3059.2002.00725.x.
12. Ren, J., Zhang, J., Wang, Q., Zhou, Y., Wang, J., Ran, C., Shang, Q. (2022). Molecular characterization of strawberry vein banding virus from China and the development of loop mediated isothermal amplification assays for their detection. Scientific Reports. no. 12, 4912 p. DOI: 10.1038/s41598-022-08981-9
13. Pavliuk, V. (2013). Sunytsia tsilyi rik – sorty i sposoby vyroshchuvannia [Strawberries all year round – varieties and methods of cultivation]. Agroexpert, 72 p.
14. Vukovych, H. (2010). Vazhneishye bolezny plodovykh [The most important fruit diseases]. Kyiv, OOO Agrar Medien Ukraine, 129 p.
15. Neri, J.C., Meléndez-Mori, J.B., Tejada-Alvarado, J.J., Vilca-Valqui, N.C., Huaman-Huaman, E., Oliva, M., Goñas, M. (2022). An Optimized Protocol for Micropropagation and Acclimatization of Strawberry (Fragaria×ananassa Duch.) Variety ‘Aroma. Agronomy. no. 12, 968 p. DOI: 10.3390/agronomy12040968
16. Quiroz, Karla, Berríos, Miguel, Carrasco, Basilio, Retamales, Jorge, Caligari, Peter, Garcia-Gonzales, Rolando. (2017). Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biological Research. 50 p. DOI: 10.1186/s40659-017-0125-8.
17. Matskevych, V.V., Filipova, L.M., Oleshko, O.H. (2022). Fiziolohiia ta biotekhnolohiia roslyn: pidruchnyk [Physiology and biotechnology of plants]. Bila Tserkva, BNAU, 427 p.
18. Miller, P.W., Belkengren, R.O. (1963). Elimination of yellow edge, crinkle and vein banding viruses and certain other virus complexes from strawberries by excision and culturing of apical meristems. Plant Dis. Rep. no. 47, pp. 298–300.
19. Adams, A.N. (1972). An improved medium for strawberry meristem culture. J. Hort. Sci. no. 47, pp. 263–264.
20. Nishi, S., Oosawa, K. (1973). Mass production method of virus-free strawberry plants through meristem callus. Japan Agr. Res. Quart. no. 7, pp. 189–194.
21. Torres, K.C. (1989). Tissue Culture of Strawberry (Fragaria). In: Tissue Culture Techniques for Horticultural Crops. Springer, Boston, MA. DOI: 10.1007/978-1-4615-9756-8_9
22. Nehra, N.S., Kartha, K.K., Stushnoff, C. (1994). Effect of in vitro propagation methods on field performance of two strawberry cultivars. Euphytica. no. 76, pp. 107–115. DOI: 10.1007/BF00024027
23. Cameron, J.S., Hancock, J.F., Nourse, T.M. (1985). The field performance of strawberry nursery stock produced originally from runners or micropropagation. Adv. Strawberry Prod. no. 4, pp. 56–58.
24. Nemtseva, Yu. (2022). Stalo vidomo, yaku tekhnolohiiu vyroshchuvannia polunytsi vykorystovuie Tevitta [It became known what technology of growing strawberries is used by Tevitta]. Available at: https:// 186 Агробіологія, 2023, № 2 agrobiologiya.btsau.edu.ua kurkul.com/news/31477-stalo-vidomo-yaku-tehnologiyu-viroschuvannya-polunitsi-vikoristovuye-tevitta
25. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. no. 15, pp. 473–497.
26. Matskevych, V.V. (2020). Mikroklonalne rozmnozhennia vydiv roslyn in vitro ta yikh postaseptychna adaptatsiia: dys. … d-ra s.-g. nauk: 06.01.05 [Microclonal propagation of plant species in vitro and their postaseptic adaptation: dissertation of the Doctor of Agricultural Sciences: 06.01.05]. Sumy, 478 p.
27. Matskevych, V.V., Podhaietskyi, A.A., Filipova, L.M. (2019). Mikroklonalne rozmnozhennia okremykh vydiv roslyn (protokoly tekhnolohii): naukovo-praktychnyi posibnyk [Microclonal propagation of certain plant species (technology protocols)]. Bila Tserkva, BNAU, 85 p.
28. Regulyator rostu roslin GIBB PLYUS [Plant growth regulator GIBB PLUS]. Available at: https:// agrarii-razom.com.ua/preparations/gibb-plyus-gibbplus
29. Tashmatova, L.V., Matsneva, O.V., Khromova, T.M., Shakhov, V.V. (2021). Optimization of individual elements of clonal micro-propagation of fruit and berry crops in the production system of healthy planting material. E3S Web Conf. The Role of Biotechnology in Obtaining Pure Virus-free Material. Vol. 254. DOI: 10.1051/e3sconf/202125404001
30. Terek, O.I., Patsula, O.I. (2011). Rist i rozvytok roslyn: navch. posibn [Growth and development of plants]. Lviv, LNU after name Ivana Franka, 328 p.
31. Matskevych, V.V., Podhaietskyi, A.A. (2015). Osoblyvosti vykorystannia formy i kilkosti zaliza za vyroshchuvannia in vitro ozhyny i malyny [Peculiarities of using the form and amount of iron for in vitro cultivation of blackberries and raspberries]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Ahronomiia i biolohiia [Bulletin of the Sumy National Agrarian University. Agronomy and biology]. Issue 9 (30), pp. 46–51.
 
Download this article: 
AttachmentSize
PDF icon matskevych_agro_2_2023.pdf3.33 MB