You are here

The density of the structure of dark gray podzolized soil under different tillage systems under crop rotation

The results of studies on the influence of tillage systems on the density of the structure of dark gray podzolized soil under crops in a four-field short-rotation crop rotation (winter rape – winter wheat – corn for grain – spring barley) in the stationary field experiment of the Institute of Agriculture of the Western Polissia of the National Academy of Sciences of Ukraine during 2016 are shown. – 2020. In the experiment, three tillage systems were studied (shelf by 20–22 cm, shallow by 10–12 cm, surface by 6–8 cm) against the background of mineral fertilizers N128P90K120 kg/ha of the crop rotation area.

It was determined that at the time of spring germination and spring weeding of winter crops under the shelf system of soil cultivation, a plow layer was formed under the crops of the crop rotation, which was characterized by a compaction density close to the optimum – 1.06–1.33 g/cm3. Under no-shelf tillage under crop rotation, the 0–30 cm soil layer was differentiated by compaction density into the upper loose 0–10 cm layer with a density of 1.13–1.24 g/cm3 and compacted to 1.30–1.41 g/cm3.

The lowest soil compaction density was in winter wheat, spring barley, and corn crops under the shelf and shallow tillage systems in soil layers of 0–10 cm and 10–20 cm, where it was, respectively, in the range of 1.06–1.19 g/cm3 and 1.17–1.25 g/cm3. Noticeably, the density of the soil compaction increased during crop rotation during surface tillage under winter rape in the soil layer of 10–20 cm to 1.36 g/cm3 and in the soil layer of 20–30 cm to 1.47 g/cm3. The compaction density under the surface tillage system under winter rape in the 20–30 cm soil layer increased by 0.14 g/cm3, compared to the wormwood tillage system for this crop.

The system of shelf and shallow soil cultivation in crop rotation creates better conditions for optimizing the agrophysical fertility indicators of dark gray podzolized soil and provides the highest crop yield in crop rotation, compared to the surface 6–8 cm system, and made it possible to obtain yields of 6.80 and 6.32 respectively t/ha of winter wheat 5.19 and 4.99 of spring barley 11.25 and 11.33 of corn and 2.97 and 3.05 t/ha of winter rapeseed. From the application of surface tillage to a depth of 6–8 cm, the yield of winter wheat decreases by 1.45 t/ha, spring barley by 1.69 corn by 3.66 t/ha and winter rapeseed by 0.30 t/ha compared with a shelf tillage system.

Key words: compaction density, tillage, shelf, shal-low, surface, productivity, crop rotation.

 

Reference: 
  1. Krut, V.M., Tanchyk, S.P. (2002). Do pytannia zastosuvannia bezpolytsevoho obrobitku gruntu pid zernovi kultury [On the issue of the use of tillage for grain crops]. Naukovyi visnyk Natsionalnoho ahrarnoho universytetu [Scientific Bulletin National Agrarian Uni-versity]. Kyiv, no. 47, pp. 13–18.
  2. Demydenko, O.V., Velychko, V.A. (2013). Ahrofizychni umovy gruntoutvorennia chornozemiv v ahrotsenozakh [Agrophysical conditions of soil formation of chernozems in agrocenoses]. Visnyk ahrarnoi nauky [Herald of Agrarian Science], no. 2, pp. 14–19.
  3. Kartashov, S.H., Horodetskyi, E.Yu., Dudka, V.S., Moskaliuk, A.A. (2019). Vplyv optymalnoi shchilnosti gruntu dlia riznykh silskohospodarskykh kultur na vrozhainist [The effect of optimal soil density for various agricultural crops on yield]. Tavriiskyi naukovyi visnyk [Taurian scientific bulletin], no. 78, pp. 21–27.
  4. Medviediev, V.V., Bulyhin, S.Yu., Vitvitskyi, S.V. (2018). Fizyka gruntu [Soil physics]. Kyiv, 289 p.
  5. Revut, Y.B. (1964). Fyzyka pochv [Soil physics]. Leningrad, Kolos, 320 p.
  6. Krotinov, O.P., Kosolap, M.P. (2010). Do istorii rozvytku system obrobitku gruntu [More to the history of the development of soil cultivation systems]. Posibnyk Ukrainskoho khliboroba [Handbook of the Ukrainian farmer]. Kharkiv, pp. 83–91.
  7. Medviediev, V.V. (2016). Optymalni fizychni vlastyvosti posivnoho sharu gruntu yak ahrovymohy do peredposivnoho obrobitku (naukove vydannia) [Optimum physical properties of the seed layer of the soil as agro-requirements for presowing treatment]. Kharkiv, 196 p.
  8. Tsiuk, O.A., Tsentylo, L.V., Melnyk, V.I. (2021). Zminy agrofizychnyh vlastyvostej chornozemu typovogo pid vplyvom zastosuvannja dobryv i obrobitku g'runtu [Changes in the agrophysical properties of typical chernozem under the influence of fertilizers and tillage]. Naukovi dopovidi Nacional'nogo universytetu bioresursiv i pryrodokorystuvannja Ukrai'ny [Scientific reports of the National University of Biological resources and Nature Management of Ukraine], no. 5 (93). DOI: 10.31548/dopovidi2021.05.007.
  9. Prymak, I.D., Bokancha, A.P. (2009). Zmina ahrofizychnykh vlastyvostei gruntu i produktyvnosti plodozminnoi sivozminy zalezhno vid system osnovnoho obrobitku v tsentralnomu Lisostepu Ukrainy [Changes in the agrophysical properties of the soil and the productivity of crop rotation depending on the main cultivation systems in the central forest-steppe of Ukraine]. Tavriiskyi naukovyi visnyk: naukovyi zhurnal [Taurian scientific bulletin: Scientific journal]. Kherson, Ailant, no. 65, pp. 37–46.
  10. Tomashivskyi, Z.M., Zaviriukha, P.D. (2001). Adaptyvni systemy zemlerobstva [Adaptive farming systems]. Lviv, LDAU, 184 p.
  11. Yevtushenko, T.V., Tonkha, O.L., Pikovska, O.V. (2018). Ahrofizychni pokaznyky chornozemu typovoho zalezhno vid udobrennia ta obrobitku [Agrophysical indicators of typical chernozem depending on fertilization and tillage]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Ahronomiya [Scientific Bulletin of the National University of Biological resources and Nature Management of Ukraine. Agronomy], no. 286, pp. 188–196.
  12. Zaiats, P.S. (2018). Vplyv sposobiv osnovnoho obrobitku na shchilnist skladennia siroho lisovoho gruntu v lantsi zernoprosapnoi sivozminy [The effect of main tillage methods on the density of gray forest soil in the grain chain of row crop rotation]. Zbirnuk naukovykh prats NNTs «Instytut zemlerobstva NAAN» [Collection of research papers of the NSC "Institute of Agriculture of the National Academy of Sciences"]. Kyiv, Edelveis, no. 4, pp. 11–20.
  13.  Havryliuk, Yu.V. (2016). Vplyv system obrobitku gruntu na yoho ahrofizychnyi stan [Influence of soil tillage systems on its agrophysical condition]. Visnyk Dnipropetrovskoho derzhavnoho ahrarno-ekonomichnoho universytetu [Bulletin of Dnipropetrovsk State Agrarian and Economic University], no. 3 (41), pp. 73–76.
  14.  Tykhonenko, D.H., Dehtiarov, V.V., Velychko, V.A. (2012). Fizychni osnovy rodiuchosti gruntiv [Physical foundations of soil fertility]. Visnyk ahrarnoi nauky [Herald of Agrarian Science], no. 12, pp. 6–9.
  15. DSTU  ISO  11272-2001. Yakist gruntu. Vyznachannia shchilnosti skladennia na sukhu masu [State Standard ISO 11272-2001. Soil quality. Determination of compaction density per dry mass. Valid from 2003-07-01]. Kyiv, Derzhspozhyvstandart Ukrainy, 2001, 327 p.
  16.  Medvedev, V.V. (2014). Proiavlenye fyzycheskoi dehradatsyy v pakhotnykh pochvakh [Manifestation of physical degradation in arable soils]. Ahrokhimiia i gruntoznavstvo [Agrochemistry and soil science], no. 81, pp. 16–28.
  17.  Nazarenko, I.I., Polchyna, S.M., Nikorych, V.A. (2006). Hruntoznavstvo z osnovamy heolohii: pidruchnyk [Soil science and the basics of geology: a textbook]. Chernivtsi, Knyhy-XXI, 504 p.
  18.  Pabat, I.A., Shevchenko, M.S., Horbatenko, A.I., Horobets, A.H. (2004). Minimalizatsiia obrobitku gruntu pry vyroshchuvanni silskohospodarskykh kultur [Minimization of soil tillage when growing agricultural crops]. Visnyk ahrarnoi nauky [Herald of Agrarian Science], no. 1, pp. 11–14.
  19.  Primak, I.D., Panchenko, O.B. (2015). Vplyv mehanichnogo obrobitku g'runtu ta udobrennja u specializovanij zernoprosapnij sivozmini Central'nogo Lisostepu Ukrai'ny na agrofizychni vlastyvosti chornozemu typovogo [The effect of mechanical tillage and fertilization in the specialized crop rotation of the Central Forest-Steppe of Ukraine on the agrophysical properties of typical chernozem]. Naukovi dopovidi Nacional'nogo universytetu bioresursiv i pryrodokorystuvannja Ukrai'ny [Scientific reports of the National University of Bioresources and Nature Management of Ukraine], no. 6. Available at: http://nbuv.gov.ua/UJRN/Nd_2015_6_11.
  20.  Tsyuk, O.A., Kyrylyuk, V.I. (2016). Vplyv system zemlerobstva na zminy agrofizychnyh pokaznykiv g'runtu [Influence of farming systems on changes in agrophysical parameters of the soil]. Naukovi dopovidi NUBiP Ukrai'ny [Scientific reports of NUBiP of Ukraine]. no. 4 (61). Available at: http://journals.nubip.edu.ua/index.php/Dopovidi/article/view/697812.
  21.  Cheriachukin, M.I., Hryhoryieva, O.M. (2019). Efektyvnist priamoi sivby na chornozemi zvychainomu vazhkosuhlynkovomu pravoberezhnoho Stepu [Effectiveness of direct seeding on ordinary heavy loamy chernozem of the right-bank Steppe]. Visnyk ahrarnoi nauky [Herald of Agrarian Science], no. 10 (799), pp. 5–11.
  22.  Chorna, L.V., Hospodarenko, H.M. (2003). Ahrofizychni vlastyvosti gruntu, yak faktor formuvannia urozhaiu [Agrophysical properties of the soil as a factor in crop formation]. Zbirnyk naukovykh prats, spetsialnyi vypusk UDAU Biolohichni nauky i problemy roslynnytstva Uman [Collection of research papers, special issue of UDAU Biological sciences and problems of crop production]. pp. 772–776.

 

Download this article: 
AttachmentSize
PDF icon furmanec_2_2022.pdf926.75 KB