1. Antonyuk, M., Shpylchyn, V., Martynenko, V., Ternovska, T. (2022). Significance of introgression hybridization for extension of genetic variability in recipient genome, NRPBE. no. 5, pp. 3–13. DOI: 10.18523/2617-4529.2022.5.3-13
2. Antonyuk, M.Z. (2019). Introgression as inductor of wheat Triticum aestivum L. genome variability: dissertation. Kyiv, Ukraine, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine. 547 p.
3. Antonyuk, M.Z., Shpylchyn, V.V., Ternovska, T.K. (2013). Permanent genetic variability in the introgressive lines and amphidiploids of Triticeae, Cytol. Genet. no. 47, pp. 242–251. DOI: 10.3103/S0095452713040026
4. Antonyuk, M.Z., Ternovskaya, T.K., Sozinov, A.A. (1994). Identification of the blocks of electrophoretic components of storage proteins encoded by the genes of three Aegilops species, Fiziol. Biokhim. Kul’turnykh Rasteniy. no. 5, pp. 474–481.
5. Aversano, R., Ercolano, M.R., Caruso, I., Fasano, C., Rosellini, D., Carputo D. (2012). Molecular Tools for Exploring Polyploid Genomes in Plants, IJMS. no. 13, pp. 10316–10335. DOI: 10.3390/ ijms130810316
6. Bauer, A. (1986). New results of breeding Ribes nidigrolaria: amphidiploid species hybrids between blackcurrant and gooseberry, Acta Hortic. pp. 107–110.
7. Burt, C., Nicholson, P. (2011). Exploiting colinearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2, Theor Appl Genet. no. 123, pp. 1387–1400. DOI: 10.1007/s00122- 011-1674-9
8. Cannon, S. (2008). Legume Comparative Genomics, in: G. Stacey (Ed.), Genetics and Genomics of Soybean, Springer New York. New York, NY, pp. 35–54. DOI: 10.1007/978-0-387-72299-3_3
9. Charmet, G. (2011). Wheat domestication: Lessons for the future, Comptes Rendus Biologies. no. 334, pp. 212–220. DOI: 10.1016/j.crvi.2010.12.013
10. Debodt, S., Maere, S., Vandepeer, Y. (2005). Genome duplication and the origin of angiosperms, Trends in Ecology & Evolution. no. 20, pp. 591–597. DOI: 10.1016/j.tree.2005.07.008
11. Fu, S., Tang, Z., Ren, Z. (2010). Inter- and intra-genomic transfer of small chromosomal segments in wheat-rye allopolyploids. J Plant Res. no. 123, pp. 97–103. DOI: 10.1007/s10265-009-0264-2
12. Gao, S., Gu, Y.Q., Wu, J., Coleman-Derr, D., Huo, N., Crossman, C., Jia, J., Zuo, Q., Ren, Z., Anderson, O.D., Kong, X. (2007). Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. Plant Mol Biol. no. 65, pp. 189–203. DOI: 10.1007/s11103-007-9208-1
13. Gaut, B.S. (2001). Patterns of Chromosomal Duplication in Maize and Their Implications for Comparative Maps of the Grasses. Genome Res. no. 11, pp. 55–66. DOI: 10.1101/gr.160601
14. Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Brüß, C., Kumlehn, J., Matzk, F., Houben, A. (2005). Uniparental Chromosome Elimination at Mitosis and Interphase in Wheat and Pearl Millet Crosses Involves Micronucleus Formation, Progressive Heterochromatinization, and DNA Fragmentation, Plant Cell. no. 17, pp. 2431– 2438. DOI: 10.1105/tpc.105.034249
15. Han, F.P., Fedak, G., Ouellet, T., Liu, B. (2003). Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae, Genome. no. 46, pp. 716–723. DOI: 10.1139/g03-049
16. Ishii, T., Ueda, T., Tanaka, H., Tsujimoto, H. (2010). Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells, Chromosome Res. no. 18, pp. 821–831. DOI: 10.1007/ s10577-010-9158-3
17. Johansson, E., Henriksson, T., Prieto-Linde, M.L., Andersson, S., Ashraf, R., Rahmatov, M. (2020). Diverse Wheat-Alien Introgression Lines as a Basis for Durable Resistance and Quality Characteristics in Bread Wheat, Front. Plant Sci. no. 11, 1067 p. DOI: 10.3389/fpls.2020.01067
18. King, I.P., Forster, B.P., Law, C.C., Cant, K.A., Orford, S.E., Gorham, J., Reader, S., Miller, T.E. (1997). 248 Агробіологія, 2024, № 1 agrobiologiya.btsau.edu.ua Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat, New Phytol. no. 137, pp. 75–81. DOI: 10.1046/j.1469-8137.1997.00828.x
19. Kozub, N.A., Sozinov, I.O., Bidnyk, H.Ya., Demianova, N.O., Sozinova, O.I., Yanse, L.A., Karelov, A.V., Blume, Ya.B. (2021). Grain quality indices in common wheat lines with introgressions of chromosome 1U from Aegilops biuncialis Vis., Fakt. Eksp. Evol. Org. no. 29, pp. 87–91. DOI: 10.7124/ FEEO.v29.1412
20. Kuzmanović, L., Rossini, F., Ruggeri, R., Pagnotta, M.A., Ceoloni, C. (2020). Engineered Durum Wheat Germplasm with Multiple Alien Introgressions: Agronomic and Quality Performance, Agronomy. no. 10, 486 p. DOI: 10.3390/agronomy10040486
21. Li, Z., Li, B., Tong, Y. (2008). The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. Journal of Genetics and Genomics. no. 35, pp. 451–456. DOI: 10.1016/S1673-8527(08)60062-4 22. Louwaars, N.P. (2018). Plant breeding and diversity: A troubled relationship? Euphytica. no. 214, 114 p. DOI: 10.1007/s10681-018-2192-5
23. Mago, R., Spielmeyer, W., Lawrence, G., Lagudah, E., Ellis, J., Pryor, A. (2002). Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet. no. 104, pp. 1317–1324. DOI: 10.1007/s00122-002- 0879-3
24. McClintock, B. (1984). The Significance of Responses of the Genome to Challenge. Science. no. 226, pp. 792–801. DOI: 10.1126/science.15739260
25. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Somers D.J. (2014). Catalogue of gene symbols for wheat. Available at:
https://shigen. nig.ac.jp/wheat/komugi/genes/download.jsp
26. Mergoum, M., Singh, P.K., Peña, R.J., Lozano-del Río, A.J., Cooper, K.V., Salmon, D.F., Gómez Macpherson, H. (2009). Triticale: A «New» Crop with Old Challenges, in: M.J. Carena (Ed.), Cereals, Springer US. New York, NY, pp. 267–287. DOI: 10.1007/978-0-387-72297-9_9
27. Metakovsky, E., Melnik, V., RodriguezQuijano, M., Upelniek, V., Carrillo, J.M. (2018). A catalog of gliadin alleles: Polymorphism of 20thcentury common wheat germplasm. The Crop Journal. no. 6, pp. 628–641. DOI: 10.1016/j.cj.2018.02.003.
28. Miller, T.E., Reader, S.M. (1987). A guide to the homoeology of chromosomes within the Triticeae. Theoret. Appl. Genetics. no. 74, pp. 214–217. DOI: 10.1007/BF00289971
29. Morgun, B.V. (2016). State and perspectives of wheat-rye translocations use in winter wheat breeding. Fiziol. Rast. Genet. no. 48, pp. 324–343. DOI: 10.15407/frg2016.04.324
30. Morgun, V.V., Topchii, T.V. (2018). The importance of resistant varieties of winter wheat, the study of sources and donors of resistance to pests and main pathogen. Fiziol. Rast. Genet. no. 50, pp. 218– 240. DOI: 10.15407/frg2018.03.218
31. Motsnyi, I.I., Моlоdchenkоvа, О.О., Nargan, T.P., Nakonechnyy, M.Yu., Mishchenko, I.A., Lyfenko, S.Ph., Smertenko, А.P., Міshchеnkо, L.Т. (2022). Impact of Alien Genes on Disease Resistance, Drought Tolerance, and Agronomic Traits in Winter Wheat Commercial Varieties. TOASJ. no. 16, e187433152111260. DOI: 10.2174/18743315-v16-e2111260
32. Mykhailyk, S.Y., Antonyuk, M.Z., Ternovska, T.K. (2011). Genetic variability of common wheat introgressive lines for the Gli genes. NaUKMA Research Papers. no. 119, pp. 8–14. Available at:
https://ekmair.ukma.edu.ua/handle/123456789/3638
33. Mykhailyk, S.Y., Antonyuk, M.Z., Ternovska, T.K. (2014) Possible molecular mechanisms of variability in gliadin genes in the wheat introgressive lines. Factors in Experimental Evolution of Organisms. no. 14, pp. 62–66. Available at:
http://utgis.org.ua/ journals/index.php/Faktory/article/view/236
34. Nemeth, C., Yang, C., Kasprzak, P., Hubbart, S., Scholefield, D., Mehra, S., Skipper, E., King, I., King, J. (2015). Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement. Genome. no. 58, pp. 71–79. DOI: 10.1139/gen-2015- 0002
35. Paterson, A.H., Bowers, J.E., Chapman, B.A. (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. U.S.A. no. 101, pp. 9903–9908. DOI: 10.1073/pnas.0307901101
36. Payne, P.I., Holt, L.M., Lawrence, G.J., Law, C.N. (1982). The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Plant Food Hum Nutr. no. 31, pp. 229–241. DOI: 10.1007/ BF01108632
37. Plyhun, V., Iefimenko, T., Antonyuk, M., Ternovska, T. (2020). Cytological stability of wheat amphidiploids and cultivars in meiosis I, NaUKMA Research Papers. Biology and Ecology. no. 3, pp. 3–13. DOI: 10.18523/2617-4529.2020.3.3-13
38. Pour-Aboughadareh, A., Kianersi, F., Poczai, P., Moradkhani, H. (2021). Potential of Wild Relatives of Wheat: Ideal Genetic Resources for Future Breeding Programs. Agronomy. no. 11, 1656 p. DOI: 10.3390/ agronomy11081656
39. Rabinovich, S.V. (1998) Importance of wheatrye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. no. 100, pp. 323–340. DOI: 10.1023/A:1018361819215
40. Ramsay, L., Macaulay, M., Cardle, L., Morgante, M., Ivanissevich, S., Maestri, E., Powell, W., Waugh, R. (1999). Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley, Plant J. no. 17, pp. 415– 425. DOI: 10.1046/j.1365-313X.1999.00392.x
41. Ruiz, M., Aguiriano, E., Fité, R., Carrillo, J.M. (2007). Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. ssp. monococcum). Genet Resour Crop Evol. no. 54, pp. 1849–1860. DOI: 10.1007/s10722-007-9208-7
42. Schlueter, J.A., Lin, J.-Y., Schlueter, S.D., Vasylenko-Sanders, I.F., Deshpande, S., Yi, J., O’Bleness, M., Roe, B.A., Nelson, R.T., Scheffler, B.E., Jackson, S.A., Shoemaker, R.C. (2007). Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics. no. 8, 330 p. DOI: 10.1186/1471-2164-8-330
43. Singh, N.K., Shepherd, K.W. (1988). Linkage mapping of genes controlling endosperm storage proteins in wheat: 1. Genes on the short arms of group 1 chromosomes. Theoret. Appl. Genetics. no. 75, pp. 628–641. DOI: 10.1007/BF00289132
44. Sozinov, A.A., Poperelya, F.A. (1980). Genetic Classification of Prolamins and Its Use for Plant Breeding. Ann. Technol. Agric. no. 28, pp. 229–245.
45. Sthapit, S.R., Marlowe, K., Covarrubias, D.C., Ruff, T.M., Eagle, J.D., McGinty, E.M, Hooker, M.A., Duong, N.B., Skinner, D.Z., See, D.R. (2020). Genetic diversity in historical and modern wheat varieties of the U.S. Pacific Northwest. Crop Sci. no. 60, pp. 3175– 3190. DOI: 10.1002/csc2.20299
46. Tanaka, H., Nabeuchi, C., Kurogaki, M., Garg, M., Saito, M., Ishikawa, G., Nakamura, T., Tsujimoto, H. (2017). A novel compensating wheat – Thinopyrum elongatum Robertsonian translocation line with a positive effect on flour quality. Breed. Sci. no. 67, pp. 509–517. DOI: 10.1270/jsbbs.17058
47. Tang, Z., Wu, M., Zhang, H., Yan, B., Tan, F., Zhang, H., Fu, S., Ren, Z. (2012). Loss of Parental Coding Sequences in an Early Generation of WheatRye Allopolyploid. International Journal of Plant Sciences. no. 173, pp. 1–6. DOI: 10.1086/662655
48. Tanksley, S.D., McCouch, S.R. (1997). Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science. no. 277, pp. 1063– 1066. DOI: 10.1126/science.277.5329.1063
49. Tenaillon, M.I. (2004). Selection Versus Demography: A Multilocus Investigation of the Domestication Process in Maize. Molecular Biology and Evolution. no. 21, pp. 1214–1225. DOI: 10.1093/ molbev/msh102
50. Ternovska, T.K., Iefimenko, T.S., Antonyuk, M.Z. (2022). Improvement of Wheat Genetic Resistance to Powdery Mildew Retrospects and Prospects. TOASJ. no. 17, e187433152210310. DOI: 10.2174/18743315-v16-e221026-2022-HT14-3623-1 51. Ternovskaya, T., Zhirov, E. (1993). The Genetic Control of Waxiness, Hairy Glume, and Mature Spike Color, Tsitol. Genet. no. 27, pp. 15–20.
52. Vdovichenko, Z.V., Zlatskaia, A.V., Ternovskaia, T.K. (2001). New morphological marker for chromosomes of the fourth homologous group of Triticinae. Tsitol Genet. no. 35, pp. 28–33.
53. Vdovychenko, Zh.V. (2004). Introgressions in the genome of common wheat (Triticum aestivum L.) as a factor affecting the results of its genetic analysis [dissertation] Ukraine, Kyiv, Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine. 182 p. Available at:
http://www. disslib.org/introhresiyi-v-henomi-m-jakoyi-pshenytsijak-faktor-shcho-vplyvaye-na-rezultaty-yiyi.html
54. Xu, D.H., Gai, J.Y. (2003). Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breeding. no. 122, pp. 503–506. DOI: 10.1046/j.0179-9541.2003.00911.x
55. Zhao, N., Xu, L., Zhu, B., Li, M., Zhang, H., Qi, B., Xu, C., Han, F., Liu B. (2011). Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome. no. 54, pp. 692–699. DOI: 10.1139/g11-028
56. Zlatskaya, A., Antonyuk, M., Vdovychenko, Z., Ternovskaya, T. (1999). Seed acid phosphatase as a genetic marker for homoeologous group 4 chromosomes in goat grass and wheat. Tsitol Genet. no. 33, pp. 35–38.