You are here

Artificial intelligence as a driver of change in modern agriculture

This article examines the essence and characteristics of artificial intelligence (AI) and its applications in various agriculture segments. Special attention is paid to the challenges of implementing AI in crop production, animal husbandry, resource management, and analytical processes. The role of robotics is examined as a key factor in the digital transformation of the agricultural sector, facilitating the adoption of new production approaches. The article highlights the main advantages of AI in the agricultural sector, such as the automation of routine tasks, reduction of manual labor costs, increased production efficiency, and the creation of new products. The use of intelligent technologies optimizes resources and boosts productivity, contributing to the competitiveness of agricultural enterprises. The article also reviews global experiences in the implementation of AI and robotics in agriculture. Examples of successful use of these technologies by leading companies are provided, along with an analysis of the experience of Ukrainian agricultural enterprises. Positive aspects of AI implementation, such as increased efficiency and crop yields, are studied, while drawbacks and risks associated with adapting new technologies to the specific conditions of Ukrainian agriculture are also highlighted. The conclusions of the article emphasize that the use of AI is a promising direction for the development of the agricultural sector. AI technologies help address key challenges related to food security and sustainable development. Despite the challenges and risks, AI's potential to enhance agricultural production efficiency is significant, and the future of agriculture largely depends on the further development and implementation of these technologies. The widespread introduction of intelligent technologies can not only transform agricultural processes, but also make them more environmentally sustainable and economically profitable in the long term.

Key words: artificial intelligence, agricultural sector, innovative technologies, agriculture, crop production, animal husbandry, robotics, machine intelligence.

 

Reference: 
1. Lykhovyd, P., Vozhehova, R., Hranovska, L., Ushkarenko, V. (2023). Shtuchnyi intelekt i mozhlyvosti yoho zastosuvannia v suchasnomu silskomu hospodarstvi [Artificial intelligence and possibilities for its application in modern agriculture]. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohii dlia silskoho hospodarstva Ukrainy [Technical and technological aspects of development and testing of new machinery and technologies for agriculture in Ukraine]. Vol. 2, no. 33 (47), pp. 68–77.
2. Kuchmiiova, T., Moroz, T., Sheshunova, A. (2023). Vykorystannia shtuchnoho intelektu v silskomu hospodarstvi [Use of artificial intelligence in agriculture]. Elektronne naukove fakhove vydannia z ekonomichnykh nauk "Modern Economics" [Electronic scientific journal on economic sciences «Modern Economics»]. 39 p., pp. 69–74.
3. Rudenko, M.V. (2019). Vplyv tsyfrovykh tekhnolohii na ahrarne vyrobnytstvo: metodychnyi aspekt [The influence of digital technologies on agricultural production: methodical aspect]. Vcheni zapysky TNU imeni V.I. Vernadskoho. Ekonomika i upravlinnia [Academic notes of TNU named after V.I. Vernadskyi. Economics and management]. Issue 6, no. 69, pp. 30–36. DOI: 10.32838/2523-4803/69-6-28.
4. Pasichnyk, Yu.V. (2021). Vykorystannia tekhnolohii shtuchnoho intelektu v ahropromyslovomu sektori ekonomiky [The use of artificial intelligence technologies in the agroindustrial sector of the economy]. Suchasni tendentsii rozvytku finansovykh ta innovatsiino investytsiinykh protsesiv v Ukraini: materialy IV mizhnar. naukovo-prakt. konf. [Modern trends in the development of financial and innovative investment processes in Ukraine: materials of the 4-th International Scientific and Practical Conference]. Vinnytsia, pp. 880–882. 5. Oliveira, R.C.d., Silva, R.D.d.S.e. (2023). Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Appl. Sci. no. 13, 7405 p. DOI: 10.3390/app13137405
6. Kumari, S., Venkatesh, V.G., Tan, F.T.C. (2023). Application of machine learning and artificial intelligence on agriculture supply chain: a comprehensive review and future research directions. Ann Oper Res. DOI: 10.1007/s10479-023-05556-3
7. Alloghani, M.A. (2024). AI for Sustainable Agriculture: A Systematic Review. In: Artificial Intelligence and Sustainability. Signals and Communication Technology. Springer, Cham. pp. 53–64. DOI: 10.1007/978-3-031-452147_3
8. Bannerjee, G., Sarkar, U., Das, S., Ghosh, I. (2018). Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies. no. 7(3), pp. 1–6.
9. Boltianska, N. (2020). Problemy i perspektyvy rozvytku informatsiinykh tekhnolohii v silskomu hospodarstvi [Prospects and problems of development of information technologies in agriculture]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu imeni Dmytra Motornoho [Proceedings of the Tavria State agrotechnological university]. Vol. 20, no. 4, pp. 175–185. DOI: 10.31388/2078-0877-2020-20-4-175-185.
10. Bhagat, P.R., Naz, F., Magda, R. (2022). Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PLoS ONE. no. 17(6), e0268989. DOI: 10.1371/journal.pone.0268989
11. Cavazza, A., Dal Mas, F., Paoloni, P., Manzo, M. (2023). Artificial intelligence and new business models in agriculture: a structured literature review and future research agenda. British Food Journal. Vol. 125, no. 13, pp. 436–461. DOI: 10.1108/BFJ-02-2023-0132
12. Kukar, M., Vračar, P., Košir, D., Pevec, D., Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture. 161 p, pp. 260–271. 13. AI in Agriculture: A Comparative Review of Developments in the USA and Africa. 2024. DOI: 10.53022/oarjst.2024.10.2.0051
14. Shadrin, D., Menshchikov, A., Somov, A., Bornemann, G., Hauslage, J., Fedorov, M. (2019). Enabling precision agriculture through embedded sensing with artificial intelligence. IEEE Transactions on Instrumentation and Measurement. no. 69(7), pp. 4103–4113.
15. CropX Agronomic Farm Management System. Available at: https://cropx.com/
16. John Deere Revolutionizes Agriculture with AI and Automation. Available at: https://www.assemblymag.com/articles/97831-john-deere-revolutionizes-agr...
17. Xarvio: Simply Smarter Crop Production. Available at: https://www.xarvio.com/global/en/products/field-manager.html
18. Cainthus Helps Dairy Farms Optimize Yields with Camera Networks, Computer Vision and AI Algorithms. Available at: https://www.digi.com/resources/customer-stories/cainthus-dairy-farm-ai-m...
19. How Blue River Technology Helps John Deere Feed the World While also Protecting it. Available at: https://www.deere.com/en/stories/featured/blue-river-and-john-deere-feed...
20. Pizhuk, O.I. (2019). Shtuchnyi intelekt yak odyn iz kliuchovykh draiveriv tsyfrovoi transformatsii ekonomiky [Artificial intelligence as one of the key drivers of the digital transformation of the economy]. Ekonomika, upravlinnia ta administruvannia [Economy, management and administration]. no. 3 (89), pp. 41–46. DOI: 10.26642/ema-2019-3(89)-41-46.
21. Intelektualne silske hospodarstvo [Intellectual Agriculture]. Available at: https://quantum.ua/ua/statti/intelektualne-silske-gospodarstvo
22. Shtuchnyi intelekt u silskomu hospodarstvi: ohliad tekhnolohii [Artificial Intelligence in Agriculture: A Technology Review]. Available at: https://agravery.com/uk/posts/show/stucnij-intelekt-v-silskomu-gospodars...
23. Shtuchnyi intelekt u silskomu hospodarstvi [Artificial Intelligence in Agriculture]. Available at: https://aggeek.net/blog/shtuchnij-intelekt-u-silskomu-gospodarstvi.
 
Download this article: 
AttachmentSize
PDF icon apunevich_2_2024.pdf492.83 KB