You are here

Ecological monitoring of migration of technogenic radionuclides between abiotic components and aquatic plants in the ecosystem of the Kaniv reservoir

During the period of 2011–2018, the average specific activity of 90Sr in aboveground organs of prairie cordgrass, submerged club-rush, common reed, and narrow-leaved cattail ranged from 1.5 to 14.0 Bq/kg, while 137Cs ranged from 3.1 to 165 Bq/kg. Over the course of the study, a tendency towards a decrease in 137Cs accumulation levels by hydrophytes was observed. The specific activity of 137Cs in helophytes and 90Sr in helophytes and hydrophytes likely remained unchanged. In 2018, the average specific activity of 90Sr in the investigated plant species did not exceed the maximum reference values for the post-accidental period. However, the specific activity of 137Cs in prairie cordgrass exceeded the maximum reference values by 13 times, while submerged club-rush, common reed, and narrow-leaved cattail exceeded the maximum reference values by 25, 3, and 2 times, respectively. During the study period, radionuclide contamination of higher aquatic plants in the Kaniv Reservoir was predominantly formed by 137Cs, accounting for 75–90 % of the contamination. In terms of increasing specific activity of 90Sr and 137Cs, plants from different ecological groups were arranged in the following sequence: gelophytes < pleustophytes < hydrophytes, indicating a balanced radioecological state in the ecosystem of the Kaniv Reservoir. This study provides insights into the levels of radionuclide activity in aquatic plants of the Kaniv Reservoir over a seven-year period. The observed decrease in 137Cs accumulation by hydrophytes suggests a potential improvement in the environmental conditions. The findings also highlight the significant contribution of 137Cs to the overall radionuclide contamination in higher aquatic plants. The sequential distribution of plants based on increasing specific activity of 90Sr and 137Cs reflects the radioecological equilibrium within the ecosystem. This information contributes to our understanding of the environmental dynamics and radiation impact in the Kaniv Reservoir ecosystem.

Key words: 90Sr activity, 137Cs activity, radionuclides, aquatic plants, ecological monitoring, Kaniv Reservoir, radionuclide accumulation, reference values, ecosystem.

 

Reference: 
1. 20 rokiv Chornobyl'skoi katastrofi [20 years of the Chernobyl disaster]. Pohlyad u maibutnie: natsional'na dopovid' Ukrainy [Looking to the future: a national report of Ukraine]. Kyiv, Atika, 2006, 224 p.
2. Antonenko, T.M. (1978). Radioekologicheskoe issledovanie nakopleniya, raspredeleniya i migratsii tseziya-137 v vodoymakh stepnoi zony Ukrainy: atoref. dis. ... kand.. biol. nauk: spets. 03.00.17 [Radioecological study of the accumulation, distribution and migration of cesium-137 in water bodies of the steppe zone of Ukraine: abstract of the thesis of the Candidate of Biological Sciences: 03.00.17]. Sevastopol, 28 p.
3. Volkova, O.M. (2006). Metod otsinki radioekolohichnoho stanu vodnykh ekosystem za vmistom radionuklidiv u hidrobiontakh [A method of assessing the radioecological state of aquatic ecosystems based on the content of radionuclides in hydrobionts]. Pryrodnychiy al'manakh. Biolohichni nauky [Natural almanac. Biological sciences]. Issue 8, pp. 7–12.
4. Volkova, E.N., Belyaev, V.V., Pryshlyak, S.P., Parkhomenko, A.A., Karapysh, V.A. (2012). Osobennosti formirovaniya radionuklidnoho zagryazneniya vysshikh vodnykh rastenii Kievskogo vodokhranilishcha [Features of the formation of radionuclide contamination of higher aquatic plants of the Kyiv reservoir]. Yaderna fizyka ta enerhetika [Nuclear physics and energy]. Vol. 13, no. 2, pp. 160–165.
5. Volkova, O.M. (2008). Technohenni radionuklidy u hidrobiontakh vodoym riznoho typu: dis. ... d-ra biol. nauk: 03.00.17 [Man-made radionuclides in hydrobionts of different types of reservoirs: Doctor of Biological Sciences dissertation: 03.00.17]. Kyiv, 348 p.
6. Dubyna, D.V., Shelyah-Sosonko, Yu.R. (1989). Printsipy klassifikatsii vyshei vodnoi rastitelnosti [Principles of classification of higher aquatic vegetation]. Gidrobiol. zhurn [Hydrobiol. journal]. Vol. 25, no. 2, pp. 9–17.
7. Shyrokaya, Z.O. (2001). Zapasy 90Sr ta 137Cs v vysshikh vodnykh rasteniyakh Kanevskoho vodokhranilishcha [Reserves of 90Sr and 137Cs in higher aquatic plants of the Kanev reservoir]. Pyatnadtsyat' rokiv Chornobyl's'koi katastrofi. Dosvid podolannya: tezy dop. mizhnar. konf. [Fifteen years of the Chernobyl disaster. The experience of overcoming: theses add. international conf.]. Kyiv, Chornobylinterinform, 218 p.
8. Kulikov, N.V. (1971). Radioekolohiya presnovodnykh rastenii i zhivotnykh [Radioecology of freshwater plants and animals]. Sovremennye problemy radiobiologii [Modern problems of radiobiology]. Atomizdat, Radioecology, Vol. 2, pp. 367–384.
9. Romanenko, V.D. (2006). Metody hidroekolohichnykh doslidzhen povershnevikh vod [Methods of hydroecological research of surface waters]. Kyiv, LOGOS, 408 p.
10. Pryshlyak, S.P. (2019). Radionuklidne zabrudnennya vysshykh vodyanykh roslyn ta rol helofitiv u mihratsiyi 137Cs u prisnovodnikh vodoymakh: dis. ... kand. biol. nauk: 03.00.17 [Radionuclide contamination of higher aquatic plants and the role of helophytes in the migration of 137Cs in freshwater reservoirs: 204 Агробіологія, 2023, № 1 agrobiologiya.btsau.edu.ua Candidate of Biological Sciences thesis: 03.00.17]. Kyiv, 194 p.
11. Pryshlyak, S.P., Belyaev, V.V., Volkova, O.M., Parkhomenko, O.O. (2011). Osoblyvosti nakopychennya 137Cs vysshymy vodyanymy roslynamy Kyivs'koho vodoskhovyshcha [Features of accumulation of 137Cs by higher aquatic plants of the Kyiv Reservoir]. Fizychni metody v ekolohii, biolohii ta medytsyni: materialy IV mizhnarodnoi konferentsii [Physical methods in ecology, biology and medicine: materials of the 4th international conference]. Lviv, Publishing Center of LNU named after Ivan Franko, pp. 91–93.
12. Romaneko, V.D. (1992). Radioaktivnoe i khimicheskoe zagryaznenie Dnepra i ego vodokhranilishch posle avarii na chernobyl'skoi AES [Radioactive and chemical contamination of the Dnieper and its reservoirs after the accident at the Chernobyl nuclear power plant]. Kyiv, Scientific thought ,194 p.
13. Voitsekhovich, O.V. (1997). Radiogeokolohiya vodnykh ob"yektov zony vliyaniya avarii na CHAES [Radiogeoecology of water bodies in the zone of influence of the Chernobyl accident]. Kyiv, Chernobylinform, Vol. 1, 308 p.
14. Kuz'menko, M.I. (2001). Radionuklidy u vodnykh ekosystemakh Ukrainy [Radionuclides in water ecosystems of Ukraine]. Kyiv, Chornobylinform, 318 p.
15. Brechignas, F., Desmet, G. (2005). Makrophytes as bioindicators of radionuclide contamination in ecosystems of different aquatis bodies of Chernobyl exclusion zone A. Kaglyan. Equidosimetri – Ecological Standartization and Equidosimetry for Radioecology and Environmental Ecology. Series C: Environmental Security. Dordrecht, Springer, Vol. 2, pp. 79–86.
 
Download this article: 
AttachmentSize
PDF icon skyba-1-2023.pdf440.2 KB